login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A214631
Number A(n,k) of solid standard Young tableaux of shape [[(n)^(k+1)],[n]^k]; square array A(n,k), n>=0, k>=0, read by antidiagonals.
3
1, 1, 1, 1, 2, 1, 1, 6, 16, 1, 1, 20, 936, 192, 1, 1, 70, 85800, 379366, 2816, 1, 1, 252, 9962680, 1825221320, 249664758, 46592, 1, 1, 924, 1340103744, 14336196893200, 89261675900020, 221005209058, 835584, 1
OFFSET
0,5
LINKS
Alois P. Heinz, Antidiagonals n = 0..12
S. B. Ekhad, D. Zeilberger, Computational and Theoretical Challenges on Counting Solid Standard Young Tableaux, arXiv:1202.6229v1 [math.CO], 2012
Wikipedia, Young tableau
EXAMPLE
Square array A(n,k) begins:
1, 1, 1, 1, 1, ...
1, 2, 6, 20, 70, ...
1, 16, 936, 85800, 9962680, ...
1, 192, 379366, 1825221320, 14336196893200, ...
1, 2816, 249664758, 89261675900020, 70351928759681296000, ...
MAPLE
b:= proc(l) option remember; local m; m:= nops(l);
`if`({map(x-> x[], l)[]}={0}, 1, add(add(`if`(l[i][j]>
`if`(i=m or nops(l[i+1])<j, 0, l[i+1][j]) and l[i][j]>
`if`(nops(l[i])=j, 0, l[i][j+1]), b(subsop(i=subsop(
j=l[i][j]-1, l[i]), l)), 0), j=1..nops(l[i])), i=1..m))
end:
A:= (n, k)-> b([[n$(k+1)], [n]$k]):
seq(seq(A(n, d-n), n=0..d), d=0..8);
MATHEMATICA
b[l_] := b[l] = With[{m = Length[l]}, If[Union[Flatten[l]] == {0}, 1, Sum[Sum[If[l[[i, j]] > If[i == m || Length[l[[i+1]] ] < j, 0, l[[i+1, j]] ] && l[[i, j]] > If[Length[l[[i]] ] == j, 0, l[[i, j+1]] ], b[ReplacePart[l, i -> ReplacePart[l[[i]], j -> l[[i, j]]-1]]], 0], {j, 1, Length[l[[i]] ]}], {i, 1, m}]]]; a[n_, k_] := b[{Array[n&, k+1], Sequence @@ Array[{n}&, k]}]; Table[Table[a[n, d-n], {n, 0, d}], {d, 0, 8}] // Flatten (* Jean-François Alcover, Dec 18 2013, translated from Maple *)
CROSSREFS
Columns k=0-2 give: A000012, A006335, A214638.
Rows n=0-1 give: A000012, A000984.
Sequence in context: A094262 A123554 A105291 * A025270 A249450 A373343
KEYWORD
nonn,tabl
AUTHOR
Alois P. Heinz, Jul 26 2012
STATUS
approved