login
A105291
Triangle read by rows: T(m,n) = binomial(m!,n), m>=0, 0 <= n <= m!.
3
1, 1, 1, 1, 1, 2, 1, 1, 6, 15, 20, 15, 6, 1, 1, 24, 276, 2024, 10626, 42504, 134596, 346104, 735471, 1307504, 1961256, 2496144, 2704156, 2496144, 1961256, 1307504, 735471, 346104, 134596, 42504, 10626, 2024, 276, 24, 1, 1, 120, 7140, 280840, 8214570, 190578024
OFFSET
0,6
COMMENTS
This is the number of nXm arrays with each row a permutation of 1..m, and rows in lexicographically strictly increasing order.
For row 0, remember that 0!=1.
LINKS
Alois P. Heinz, Rows n = 0..6, flattened
EXAMPLE
Triangle begins:
[1, 1],
[1, 1],
[1, 2, 1],
[1, 6, 15, 20, 15, 6, 1],
[1, 24, 276, 2024, 10626, 42504, 134596, 346104, 735471, 1307504, 1961256, 2496144, 2704156, 2496144, 1961256, 1307504, 735471, 346104, 134596, 42504, 10626, 2024, 276, 24, 1],
...
MATHEMATICA
Flatten[Table[Binomial[m!, n], {m, 0, 5}, {n, 0, m!}]] (* Harvey P. Dale, Apr 16 2013 *)
CROSSREFS
See A180397 for another version.
Cf. A007318 (Pascal's triangle), A086687, A109892.
Sequence in context: A039763 A094262 A123554 * A214631 A025270 A249450
KEYWORD
nonn,tabf
AUTHOR
N. J. A. Sloane, Sep 03 2010, following a suggestion from R. H. Hardin, Aug 31 2010
STATUS
approved