Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).
%I #8 Nov 06 2016 13:04:54
%S 1,1,1,1,1,2,1,1,6,15,20,15,6,1,1,24,276,2024,10626,42504,134596,
%T 346104,735471,1307504,1961256,2496144,2704156,2496144,1961256,
%U 1307504,735471,346104,134596,42504,10626,2024,276,24,1,1,120,7140,280840,8214570,190578024
%N Triangle read by rows: T(m,n) = binomial(m!,n), m>=0, 0 <= n <= m!.
%C This is the number of nXm arrays with each row a permutation of 1..m, and rows in lexicographically strictly increasing order.
%C For row 0, remember that 0!=1.
%H Alois P. Heinz, <a href="/A105291/b105291.txt">Rows n = 0..6, flattened</a>
%e Triangle begins:
%e [1, 1],
%e [1, 1],
%e [1, 2, 1],
%e [1, 6, 15, 20, 15, 6, 1],
%e [1, 24, 276, 2024, 10626, 42504, 134596, 346104, 735471, 1307504, 1961256, 2496144, 2704156, 2496144, 1961256, 1307504, 735471, 346104, 134596, 42504, 10626, 2024, 276, 24, 1],
%e ...
%t Flatten[Table[Binomial[m!,n],{m,0,5},{n,0,m!}]] (* _Harvey P. Dale_, Apr 16 2013 *)
%Y See A180397 for another version.
%Y Cf. A007318 (Pascal's triangle), A086687, A109892.
%K nonn,tabf
%O 0,6
%A _N. J. A. Sloane_, Sep 03 2010, following a suggestion from _R. H. Hardin_, Aug 31 2010