login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A214634
a(1) = 7; a(n) is smallest prime of the form k*a(n-1) + 3, k>0.
1
7, 17, 37, 151, 607, 1217, 2437, 4877, 39019, 78041, 624331, 6243313, 174812767, 1398502139, 19579029949, 39158059901, 1957902995053, 15663223960427, 156632239604273, 3132644792085463, 181693397940956857, 726773591763827431, 7267735917638274313, 1148302274986847341457, 4593209099947389365831
OFFSET
1,1
LINKS
EXAMPLE
a(2) = 17 = 2 * 7 + 3.
a(3) = 37 = 2 * 17 + 3.
a(4) = 151 = 4 * 37 + 3.
MAPLE
A214634 := proc(n)
option remember;
local k;
if n = 1 then
7;
else
for k from 1 do
if isprime(k*procname(n-1)+3) then
return k*procname(n-1)+3 ;
end if;
end do:
end if;
end proc:
seq(A214634(n), n=1..20) ; # R. J. Mathar, Jul 23 2012
MATHEMATICA
spf[n_]:=Module[{k=1}, While[!PrimeQ[k*n+3], k++]; k*n+3]; NestList[spf, 7, 25] (* Harvey P. Dale, Aug 02 2017 *)
PROG
(PARI) a=7; for(n=1, 200, b=a*n+3; if(isprime(b), a=b; print1(a, ", "); next(n=1)))
CROSSREFS
KEYWORD
nonn
AUTHOR
Robin Garcia, Jul 23 2012
EXTENSIONS
More terms from Robert Israel, Nov 23 2016
STATUS
approved