The OEIS is supported by the many generous donors to the OEIS Foundation.

 Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 60th year, we have over 367,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”). Other ways to Give
 Hints (Greetings from The On-Line Encyclopedia of Integer Sequences!)
 A214630 a(n) is the reduced numerator of 1/4 - 1/A109043(n)^2 = (1 - 1/A026741(n)^2)/4. 1
 -1, 0, 0, 2, 3, 6, 2, 12, 15, 20, 6, 30, 35, 42, 12, 56, 63, 72, 20, 90, 99, 110, 30, 132, 143, 156, 42, 182, 195, 210, 56, 240, 255, 272, 72, 306, 323, 342, 90, 380, 399, 420, 110, 462, 483, 506, 132, 552, 575, 600, 156 (list; graph; refs; listen; history; text; internal format)
 OFFSET 0,4 COMMENTS The unreduced fractions are -1/0, 0/4, 0/1, 8/36, 3/16, 24/100, 2/9, 48/196, 15/64, 80/324, 6/25, ... = c(n)/A061038(n), say. Note that c(n)=A061037(n) + (period of length 2: repeat 0, 3). c(n) is a permutation of A198442(n). The corresponding ranks are (the 0's have been swapped for convenience) 0,2,1,6,4,10,... = A145979(n-2). Define the following sequences, satisfying the recurrence a(n) = 2*a(n-4) - a(n-8), e(n) = -1, 0, 0, 2, 1, 4, 1, 6, 3, 8, 2, 10, 5, ... (after -1, a permutation of A004526(n) or mix A026741(n-1), 2*n), f(n) = 1, 2, 1, 4, 3, 6, 2, 8, 5, 10, 3, 12, 7, ..., (another permutation of A004526(n+2) or mix A026741(n+1), 2*n+2). f(n) - e(n) = periodic of period length 4: repeat 2, 2, 1, 2. e(n) + f(n) = 0, 2, 1, 6, 4, 10, ... = A145979(n-2). Then c(n) = e(n)*f(n). Note that A061038(n) - 4*c(n) = periodic of period length 4: repeat 4, 4, 1, 4. After division (by period 2: repeat 1, 4, A010685(n)), the reduced fractions of c(n) are -1/0, 0/1 ?, 0/4 ?, 2/9, 3/16, 6/25, 2/9, 12/49, 15/64, 20/81, 6/25, ... = a(n)/b(n). Note that a(1+4*n) + a(2+4*n) + a(3+4*n) = 2,20,56,... = A002378(1+3*n) = A194767(3*n). A061037(n-2) - a(n-2) = 0, -3, 0, -3, 0, 3, 0, 15, 0, 33, 0, 57, ... = Fip(n-2). Fip(n-2)/3 = 0,-1,0,-1,0,1,0,5,0,11,0,19,0,29, .... Without 0's: A165900(n) (a Fibonacci polynomial); also -A110331(n+1) (Pell numbers). g(n) = -1, 0, 0, 1, 1, 2, 1, 3, 3, 4, ... = mix A026741(n-1), n. h(n) = 1, 1, 1, 2, 3, 3, 2, 4, 5, 5, ... = mix A026741(n+1), n+1. h(n) - g(n) = (period 2: repeat 2, 1, 1, 1 = A177704(n-1)). k(n) = 1, 1, 0, 2, 3, 3, 1, 4, 5, 5, ... = mix A174239(n), n+1. l(n) = -1, 0, 1, 1, 1, 2, 2, 3, 3, 4, ... . k(n) - l(n) = period 4: repeat 2, 1, -1, 1. 2) By the second formula in the definition, we take first 1 - 1/A026741(n)^2. Hence, using a convention for the first fraction, -1/0, 0/1, 0/1, 8/9, 3/4, 24/25, 8/9, 48/49, 15/16, 80/81, 24/25, ... = (A005563(n-1) - A033996(n))/A168077(n) = q(n)/A168077(n). For a(n), we divide by 4. Note that A214297 is the reduced numerator of 1/4 - 1/A061038(n). Note also that A168077(n) = A026741(n)^2. LINKS Colin Barker, Table of n, a(n) for n = 0..1000 Index entries for linear recurrences with constant coefficients, signature (0,0,0,3,0,0,0,-3,0,0,0,1). FORMULA a(4*n) = 4*n^2-1 = (2*n-1)*(2*n+1), a(2*n+1) = a(4*n+2) = n(n+1). a(n)= A198442(n)/(period of length 4: repeat 1,1,4,1=A010121(n+2)). a(n) = 3*a(n-4) - 3*a(n-8) + a(n-12). Is this the shortest possible recurrence? See A214297. a(n+2) - a(n-2) = 0, 2, 4, 6, 2, 10, 12, 14, 4, ... = 2*A214392(n). a(-2)=a(-1)=0=a(1)=a(2). a(n+4) - a(n-4) = 0, 4, 2, 12, 16, 20, 6, 28, 32, 36,... = 2*A188167(n). a(-4)=3=a(4), a(-3)=2=a(3). a(n) = g(n) * h(n). a(n) = k(n) * l(n). G.f.: -(2*x^9+3*x^8+6*x^7+2*x^6+6*x^5+6*x^4+2*x^3-1) / ((x-1)^3*(x+1)^3*(x^2+1)^3). - Colin Barker, Jan 22 2015 From Luce ETIENNE, Apr 08 2017: (Start) a(n) = (13*n^2-28-3*(n^2+4)*(-1)^n+3*(n^2-4)*((-1)^((2*n-1+(-1)^n)/4)+(-1)^((2*n+1-(-1)^n)/4)))/64. a(n) = (13*n^2-28-3*(n^2+4)*cos(n*Pi)+6*(n^2-4)*cos(n*Pi/2))/64. (End) MATHEMATICA CoefficientList[Series[(2*x^9+3*x^8+6*x^7+2*x^6+6*x^5+6*x^4+2*x^3-1)/((1-x)^3*(x+1)^3*(x^2+1)^3), {x, 0, 50}], x] (* G. C. Greubel, Sep 20 2018 *) LinearRecurrence[{0, 0, 0, 3, 0, 0, 0, -3, 0, 0, 0, 1}, {-1, 0, 0, 2, 3, 6, 2, 12, 15, 20, 6, 30}, 60] (* Harvey P. Dale, Jul 01 2019 *) PROG (PARI) Vec(-(2*x^9+3*x^8+6*x^7+2*x^6+6*x^5+6*x^4+2*x^3-1)/((x-1)^3*(x+ 1)^3*(x^2+1)^3) + O(x^100)) \\ Colin Barker, Jan 22 2015 (Magma) m:=50; R:=PowerSeriesRing(Integers(), m); Coefficients(R!((2*x^9+3*x^8+6*x^7+2*x^6+6*x^5+6*x^4+2*x^3-1)/((1-x)^3*(x+1)^3*(x^2+1)^3))); // G. C. Greubel, Sep 20 2018 CROSSREFS Cf. A000466, A002378, A131723. Sequence in context: A330666 A319432 A115033 * A093396 A189971 A211605 Adjacent sequences: A214627 A214628 A214629 * A214631 A214632 A214633 KEYWORD sign,frac,easy AUTHOR Paul Curtz, Jul 23 2012 EXTENSIONS Edited by N. J. A. Sloane, Aug 04 2012 STATUS approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recents
The OEIS Community | Maintained by The OEIS Foundation Inc.

Last modified December 7 01:11 EST 2023. Contains 367616 sequences. (Running on oeis4.)