login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A214627
Primes in A161671.
3
2, 3, 7, 19, 29, 43, 47, 71, 83, 101, 113, 193, 197, 229, 241, 271, 283, 293, 311, 347, 383, 439, 457, 463, 491, 499, 523, 587, 619, 643, 683, 733, 797, 827, 857, 863, 919, 991, 1021, 1031, 1091, 1151, 1187, 1289, 1367, 1549, 1567, 1619, 1637, 1693, 1697, 1733, 1741, 1811, 1867, 1871, 1907
OFFSET
1,1
LINKS
Michael De Vlieger, Scatterplot of A161671(n), n = 1..120, showing and labeling primes p in this sequence in red and blue. The red primes are duplicated and are listed in A220220. We plot in green duplicated composite terms.
FORMULA
A161671 INTERSECT A000040.
MAPLE
isA214627 := proc(n)
if isprime(n) then
for j from 1 do
if A161671(j) = n then
return true;
elif j >7 and A161671(j) > n then
return false;
end if;
end do:
else
false;
end if;
end proc:
for n from 2 to 2000 do
if isA214627(n) then
printf("%d, ", n) ;
end if;
end do; # R. J. Mathar, Aug 09 2012
MATHEMATICA
f[n_] := FixedPoint[n + PrimePi@ # &, n + PrimePi@ n]; Union@ Reap[Do[If[PrimeQ[#], Sow[#]] &[Prime[i] - f[i - 1] ], {i, 350}] ][[-1, -1]] (* Michael De Vlieger, Mar 22 2022, after Robert G. Wilson v at A141468 *)
CROSSREFS
KEYWORD
nonn
AUTHOR
STATUS
approved