Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).
%I #28 Mar 22 2022 18:53:28
%S 2,3,7,19,29,43,47,71,83,101,113,193,197,229,241,271,283,293,311,347,
%T 383,439,457,463,491,499,523,587,619,643,683,733,797,827,857,863,919,
%U 991,1021,1031,1091,1151,1187,1289,1367,1549,1567,1619,1637,1693,1697,1733,1741,1811,1867,1871,1907
%N Primes in A161671.
%H Michael De Vlieger, <a href="/A214627/b214627.txt">Table of n, a(n) for n = 1..10000</a>
%H Michael De Vlieger, <a href="/A161671/a161671.png">Scatterplot of A161671(n)</a>, n = 1..120, showing and labeling primes p in this sequence in red and blue. The red primes are duplicated and are listed in A220220. We plot in green duplicated composite terms.
%F A161671 INTERSECT A000040.
%p isA214627 := proc(n)
%p if isprime(n) then
%p for j from 1 do
%p if A161671(j) = n then
%p return true;
%p elif j >7 and A161671(j) > n then
%p return false;
%p end if;
%p end do:
%p else
%p false;
%p end if;
%p end proc:
%p for n from 2 to 2000 do
%p if isA214627(n) then
%p printf("%d,",n) ;
%p end if;
%p end do; # _R. J. Mathar_, Aug 09 2012
%t f[n_] := FixedPoint[n + PrimePi@ # &, n + PrimePi@ n]; Union@ Reap[Do[If[PrimeQ[#], Sow[#]] &[Prime[i] - f[i - 1] ], {i, 350}] ][[-1, -1]] (* _Michael De Vlieger_, Mar 22 2022, after _Robert G. Wilson v_ at A141468 *)
%Y Cf. A141468, A161671, A220220.
%K nonn
%O 1,1
%A _Juri-Stepan Gerasimov_, Aug 08 2012