login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A246373
Primes p such that if 2p-1 = product_{k >= 1} A000040(k)^(c_k), then p <= product_{k >= 1} A000040(k-1)^(c_k).
7
2, 3, 7, 19, 29, 31, 37, 47, 67, 71, 79, 89, 97, 101, 103, 107, 109, 127, 139, 151, 157, 181, 191, 197, 199, 211, 223, 227, 229, 241, 251, 269, 271, 277, 283, 307, 317, 331, 337, 349, 359, 367, 373, 379, 397, 409, 421, 433, 439, 457, 461, 467, 487, 499, 521, 541, 547, 569, 571, 577, 601
OFFSET
1,1
COMMENTS
Primes p such that A064216(p) >= p, or equally, A064989(2p-1) >= p.
All primes of A005382 are present here, because if 2p-1 is prime q, Bertrand's postulate guarantees (after cases 2 and 3 which are in A048674) that there exists at least one prime r larger than p and less than q = 2p-1, for which A064989(q) = r.
LINKS
EXAMPLE
2 is present, as 2*2 - 1 = 3 = p_2, and p_{2-1} = p_1 = 2 >= 2.
3 is present, as 2*3 - 1 = 5 = p_3, and p_{3-1} = p_2 = 3 >= 3.
5 is not present, as 2*5 - 1 = 9 = p_2 * p_2, and p_1 * p_1 = 4, with 4 < 5.
7 is present, as 2*7 - 1 = 13 = p_6, and p_5 = 11 >= 7.
PROG
(PARI)
A064989(n) = {my(f); f = factor(n); if((n>1 && f[1, 1]==2), f[1, 2] = 0); for (i=1, #f~, f[i, 1] = precprime(f[i, 1]-1)); factorback(f)};
n = 0; forprime(p=2, 2^31, if((A064989((2*p)-1) >= p), n++; write("b246373.txt", n, " ", p); if(n > 9999, break)));
(Scheme, with Antti Karttunen's IntSeq-library)
(define A246373 (MATCHING-POS 1 1 (lambda (n) (and (prime? n) (>= (A064216 n) n)))))
CROSSREFS
Intersection of A000040 and A246372.
Subsequence: A005382.
A246374 gives the primes not here.
Sequence in context: A078373 A038878 A040112 * A074855 A038935 A214627
KEYWORD
nonn
AUTHOR
Antti Karttunen, Aug 25 2014
STATUS
approved