OFFSET
0,3
COMMENTS
Row sums of A110330. Results from a general construction: the row sums of the inverse of the number triangle whose columns have e.g.f. (x^k/k!)/(1-a*x-b*x^2) have g.f. (1-(a+2)x-(2b-a-1)x^2)/(1-x)^3 and general term 1+(b-a)*n-b*n^2. This is the binomial transform of (1,-a,-2b,0,0,0,...).
Hankel transform of A007054(n)-2*0^n. - Paul Barry, Jul 20 2008
LINKS
Vincenzo Librandi, Table of n, a(n) for n = 0..1000
Index entries for linear recurrences with constant coefficients, signature (3,-3,1).
FORMULA
a(n) = 1-n-n^2.
G.f.: (1-4*x+x^2)/(1-x)^3.
a(n) = binomial(n+2, 2) - 4*binomial(n+1, 2) + binomial(n, 2).
a(n) = 3*a(n-1) -3*a(n-2) +a(n-3). - Vincenzo Librandi, Jul 08 2012
E.g.f.: exp(x)*(1-2*x-x^2). - Tom Copeland, Dec 02 2013
MATHEMATICA
CoefficientList[Series[(1-4x+x^2)/(1-x)^3, {x, 0, 50}], x] (* Vincenzo Librandi, Jul 08 2012 *)
LinearRecurrence[{3, -3, 1}, {1, -1, -5}, 60] (* Harvey P. Dale, Mar 22 2022 *)
PROG
(Magma) [1-n-n^2: n in [0..50]]; // Vincenzo Librandi, Jul 08 2012
(PARI) a(n)=1-n-n^2 \\ Charles R Greathouse IV, Jun 17 2017
CROSSREFS
KEYWORD
easy,sign
AUTHOR
Paul Barry, Jul 20 2005
STATUS
approved