login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A110333
Triangle read by rows: T(n,k) (n,k>=0) = number of peakless Motzkin paths of length n having k valleys (i.e., (1,-1) followed by (1,1)) at level zero (can be easily translated into RNA secondary structure terminology).
2
1, 1, 1, 2, 4, 8, 16, 1, 33, 4, 70, 12, 152, 32, 1, 336, 82, 5, 754, 206, 18, 1714, 512, 56, 1, 3940, 1264, 163, 6, 9145, 3109, 456, 25, 21406, 7634, 1243, 88, 1, 50478, 18737, 3326, 284, 7, 119814, 46006, 8781, 868, 33, 286045, 113062, 22955, 2556, 129, 1, 686456
OFFSET
0,4
COMMENTS
Row n (n >= 3) has floor(n/3) terms.
Row sums yield the RNA secondary structure numbers (A004148).
LINKS
W. R. Schmitt and M. S. Waterman, Linear trees and RNA secondary structure, Discrete Appl. Math., 51, 317-323, 1994.
P. R. Stein and M. S. Waterman, On some new sequences generalizing the Catalan and Motzkin numbers, Discrete Math., 26 (1978), 261-272.
M. Vauchassade de Chaumont and G. Viennot, Polynômes orthogonaux et problèmes d'énumeration en biologie moléculaire, Publ. I.R.M.A. Strasbourg, 1984, 229/S-08, Actes 8e Sem. Lotharingien, pp. 79-86.
FORMULA
T(n,0) = A110334(n).
Sum_{k>=0} k*T(n,k) = A110335(n-6) for n >= 6, 0 otherwise.
G.f.: (1 + z^2*g - tz^2*g - z^2 + tz^2)/(1 - z - z^3*g - tz^2*g + tz^3*g + z^3 + tz^2 - tz^3), where g = 1 + zg + z^2*g(g-1) = (1 - z + z^2 - sqrt(1 - 2z - z^2 - 2z^3 + z^4))/(2z^2) is the g.f. of the RNA secondary structure numbers (A004148).
EXAMPLE
T(10,2)=5 because we have HUH(DU)H(DU)HD, UH(DU)H(DU)HDH, UHH(DU)H(DU)HD, UH(DU)HH(DU)HD and UH(DU)H(DU)HHD, where U=(1,1), H=(1,0), D=(1,-1) and the valleys at level zero are shown between parentheses.
Triangle begins:
1;
1;
1;
2;
4;
8;
16, 1;
33, 4;
70, 12;
152, 32, 1;
336, 62, 5;
MAPLE
g:=(1-z+z^2-sqrt(1-2*z-z^2-2*z^3+z^4))/2/z^2: G:=(1+z^2*g-z^2*g*t-z^2+t*z^2)/(1-z-z^3*g-t*z^2*g+t*z^3*g+z^3+t*z^2-t*z^3): Gser:=simplify(series(G, z=0, 23)): P[0]:=1: for n from 1 to 20 do P[n]:=coeff(Gser, z^n) od: for n from 0 to 2 do print(1) od: for n from 3 to 20 do seq(coeff(t*P[n], t^k), k=1..floor(n/3)) od; # yields sequence in triangular form
CROSSREFS
KEYWORD
nonn,tabf
AUTHOR
Emeric Deutsch, Jul 20 2005
EXTENSIONS
Keyword tabf added by Michel Marcus, Apr 09 2013
STATUS
approved