

A102251


Begin with 1, multiply each digit by 2.


3



1, 2, 4, 8, 16, 2, 12, 4, 2, 4, 8, 4, 8, 16, 8, 16, 2, 12, 16, 2, 12, 4, 2, 4, 2, 12, 4, 2, 4, 8, 4, 8, 4, 2, 4, 8, 4, 8, 16, 8, 16, 8, 4, 8, 16, 8, 16, 2, 12, 16, 2, 12, 16, 8, 16, 2, 12, 16, 2, 12, 4, 2, 4, 2, 12, 4, 2, 4, 2, 12, 16, 2, 12, 4, 2, 4, 2, 12, 4, 2, 4, 8, 4, 8, 4, 2, 4, 8, 4, 8, 4, 2, 4
(list;
graph;
refs;
listen;
history;
text;
internal format)



OFFSET

0,2


COMMENTS

Same digits as A061581 without the memory of the groupings of the preceding digits. A bunch of sequences can be produced with this rule: a(n)=d*k beginning with 1,2,3... for k=2,3,...


LINKS

Reinhard Zumkeller, Table of n, a(n) for n = 0..10000


FORMULA

d*2, beginning with 1


EXAMPLE

Read a(5)=16 which produces a(6)=2 because 1*2=2 and a(7)=12 because 6*2=12. Now read a(6)=2 which produces [a(7) is already written] a(8)=4 because 2*2=4.


MATHEMATICA

Flatten[ NestList[ Function[x, Flatten[ FromDigits /@ 2IntegerDigits[ x]]], 1, 15]] (* Robert G. Wilson v, Feb 21 2005 *)


PROG

(Haskell)
a102251 n = a102251_list !! n
a102251_list = 1 : (map (* 2) $
concatMap (map (read . return) . show) a102251_list)
 Reinhard Zumkeller, Oct 02 2014


CROSSREFS

Cf. A061581.
Cf. A248131.
Sequence in context: A110333 A247292 A069783 * A339853 A218338 A218468
Adjacent sequences: A102248 A102249 A102250 * A102252 A102253 A102254


KEYWORD

base,easy,nonn


AUTHOR

Alexandre Wajnberg and Eric Angelini, Feb 18 2005


EXTENSIONS

More terms from Robert G. Wilson v, Feb 21 2005


STATUS

approved



