OFFSET
0,2
LINKS
W. R. Schmitt and M. S. Waterman, Linear trees and RNA secondary structure, Discrete Appl. Math., 51, 317-323, 1994.
P. R. Stein and M. S. Waterman, On some new sequences generalizing the Catalan and Motzkin numbers, Discrete Math., 26 (1978), 261-272.
M. Vauchassade de Chaumont and G. Viennot, Polynômes orthogonaux et problèmes d'énumeration en biologie moléculaire, Publ. I.R.M.A. Strasbourg, 1984, 229/S-08, Actes 8e Sem. Lotharingien, pp. 79-86.
FORMULA
a(n) = Sum_{k>=0} k*A110333(n+6,k).
G.f.: 8/((1 - z + z^2 + Q)^2*(1 - 2z - z^2 + z^4 + (1 - z - z^2)Q)), where Q = sqrt(1 - 2z - z^2 - 2z^3 + z^4).
D-finite with recurrence +(n+10)*(79*n+56)*a(n) +(79*n^2+300*n-6319)*a(n-1) +12*(-65*n^2-383*n+259)*a(n-2) +(59*n^2-330*n-1751)*a(n-3) +6*(-28*n^2-83*n-301)*a(n-4) +(691*n^2+666*n-343)*a(n-5) -(227*n+280)*(n-2)*a(n-6)=0. - R. J. Mathar, Jul 24 2022
EXAMPLE
a(1)=4 because among the 37 (=A004148(7)) peakless Motzkin paths of length 7 only HUH(DU)HD, UH(DU)HDH, UH(DU)HHD and UHH(DU)HD have valleys at level zero (shown between parentheses; here U=(1,1), H=(1,0), D=(1,-1)).
MAPLE
Q:=sqrt(1-2*z-z^2-2*z^3+z^4): G:=8/(1-z+z^2+Q)^2/(1-2*z-z^2+z^4+(1-z-z^2)*Q): Gser:=series(G, z=0, 34): 1, seq(coeff(Gser, z^n), n=1..31);
CROSSREFS
KEYWORD
nonn
AUTHOR
Emeric Deutsch, Jul 20 2005
STATUS
approved