login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A110335
Number of valleys (i.e., (1,-1) followed by (1,1)) at level zero in all peakless Motzkin paths of length n+6 (can be easily translated into RNA secondary structure terminology).
1
1, 4, 12, 34, 92, 242, 627, 1608, 4096, 10388, 26269, 66304, 167161, 421162, 1060816, 2671908, 6730941, 16961430, 42758695, 107843080, 272136858, 687106696, 1735849310, 4387895300, 11098372185, 28088028612, 71128006458, 180224822694
OFFSET
0,2
LINKS
W. R. Schmitt and M. S. Waterman, Linear trees and RNA secondary structure, Discrete Appl. Math., 51, 317-323, 1994.
P. R. Stein and M. S. Waterman, On some new sequences generalizing the Catalan and Motzkin numbers, Discrete Math., 26 (1978), 261-272.
M. Vauchassade de Chaumont and G. Viennot, Polynômes orthogonaux et problèmes d'énumeration en biologie moléculaire, Publ. I.R.M.A. Strasbourg, 1984, 229/S-08, Actes 8e Sem. Lotharingien, pp. 79-86.
FORMULA
a(n) = Sum_{k>=0} k*A110333(n+6,k).
G.f.: 8/((1 - z + z^2 + Q)^2*(1 - 2z - z^2 + z^4 + (1 - z - z^2)Q)), where Q = sqrt(1 - 2z - z^2 - 2z^3 + z^4).
D-finite with recurrence +(n+10)*(79*n+56)*a(n) +(79*n^2+300*n-6319)*a(n-1) +12*(-65*n^2-383*n+259)*a(n-2) +(59*n^2-330*n-1751)*a(n-3) +6*(-28*n^2-83*n-301)*a(n-4) +(691*n^2+666*n-343)*a(n-5) -(227*n+280)*(n-2)*a(n-6)=0. - R. J. Mathar, Jul 24 2022
EXAMPLE
a(1)=4 because among the 37 (=A004148(7)) peakless Motzkin paths of length 7 only HUH(DU)HD, UH(DU)HDH, UH(DU)HHD and UHH(DU)HD have valleys at level zero (shown between parentheses; here U=(1,1), H=(1,0), D=(1,-1)).
MAPLE
Q:=sqrt(1-2*z-z^2-2*z^3+z^4): G:=8/(1-z+z^2+Q)^2/(1-2*z-z^2+z^4+(1-z-z^2)*Q): Gser:=series(G, z=0, 34): 1, seq(coeff(Gser, z^n), n=1..31);
CROSSREFS
Sequence in context: A349973 A107069 A191823 * A166294 A307305 A176753
KEYWORD
nonn
AUTHOR
Emeric Deutsch, Jul 20 2005
STATUS
approved