login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A176753
Sequence defined by the recurrence formula a(n+1)=sum(a(p)*a(n-p)+k,p=0..n)+l for n>=1, with here a(0)=1, a(1)=1, k=0 and l=-2.
0
1, 1, 0, -1, -4, -12, -34, -93, -248, -644, -1622, -3932, -9054, -19314, -36066, -48953, 8372, 415848, 2180870, 8609676, 29858358, 95443242, 286747530, 815867808, 2199049782, 5577559986, 13083598882, 27240793594, 44583397354
OFFSET
0,5
FORMULA
G.f f: f(z)=(1-sqrt(1-4*z*(a(0)-z*a(0)^2+z*a(1)+(k+l)*z^2/(1-z)+k*z^2/(1-z)^2)))/(2*z) (k=0, l=-2).
Conjecture: (n+1)*a(n) +2*(1-3*n)*a(n-1) +(9*n-13)*a(n-2) +2*(2*n-9)*a(n-3) +8*(4-n)*a(n-4)=0. - R. J. Mathar, Jul 24 2012
EXAMPLE
a(2)=2*1*1-2=0. a(3)=1-2=-1. a(4)=2*1*(-1)-2=-4.
MAPLE
l:=-2: : k := 0 : m:=1:d(0):=1:d(1):=m: for n from 1 to 30 do d(n+1):=sum(d(p)*d(n-p)+k, p=0..n)+l:od :
taylor((1-sqrt(1-4*z*(d(0)-z*d(0)^2+z*m+(k+l)*z^2/(1-z)+k*z^2/(1-z)^2)))/(2*z), z=0, 30); seq(d(n), n=0..30);
CROSSREFS
Cf. A176752.
Sequence in context: A110335 A166294 A307305 * A248873 A180224 A293005
KEYWORD
easy,sign
AUTHOR
Richard Choulet, Apr 25 2010
STATUS
approved