login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A176750
Sequence defined by the recurrence formula a(n+1)=sum(a(p)*a(n-p)+k,p=0..n)+l for n>=1, with here a(0)=1, a(1)=4, k=0 and l=-1.
1
1, 4, 7, 29, 113, 506, 2321, 11112, 54429, 272364, 1384701, 7135397, 37178543, 195556526, 1036967927, 5537451445, 29752654081, 160731437308, 872518135861, 4756932856431, 26035840213731, 143003903810742, 787983925181427
OFFSET
0,2
FORMULA
G.f f: f(z)=(1-sqrt(1-4*z*(a(0)-z*a(0)^2+z*a(1)+(k+l)*z^2/(1-z)+k*z^2/(1-z)^2)))/(2*z) (k=0, l=-1).
Conjecture: (n+1)*a(n) +2*(-3*n+1)*a(n-1) +(-3*n+11)*a(n-2) +4*(6*n-19)*a(n-3) +16*(-n+4)*a(n-4)=0. - R. J. Mathar, Feb 18 2016
EXAMPLE
a(2)=2*1*4-1=7. a(3)=2*1*7+4^2-1=29. a(4)=2*1*29+2*4*7-1=113.
MAPLE
l:=-1: : k := 0 : m:=4:d(0):=1:d(1):=m: for n from 1 to 30 do d(n+1):=sum(d(p)*d(n-p)+k, p=0..n)+l:od : taylor((1-sqrt(1-4*z*(d(0)-z*d(0)^2+z*m+(k+l)*z^2/(1-z)+k*z^2/(1-z)^2)))/(2*z), z=0, 30); seq(d(n), n=0..30);
CROSSREFS
Cf. A176749.
Sequence in context: A272870 A377458 A362650 * A030687 A149081 A149082
KEYWORD
easy,nonn
AUTHOR
Richard Choulet, Apr 25 2010
STATUS
approved