login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A293005
Number of associative, quasitrivial, and order-preserving binary operations on the n-element set {1,...,n}.
4
0, 1, 4, 12, 34, 94, 258, 706, 1930, 5274, 14410, 39370, 107562, 293866, 802858, 2193450, 5992618, 16372138, 44729514, 122203306, 333865642, 912137898, 2492007082, 6808289962, 18600594090, 50817768106, 138836724394, 379308985002, 1036291418794, 2831200807594
OFFSET
0,3
LINKS
M. Couceiro, J. Devillet, and J.-L. Marichal, Quasitrivial semigroups: characterizations and enumerations, arXiv:1709.09162 [math.RA] (2017).
Jimmy Devillet, Bisymmetric and quasitrivial operations: characterizations and enumerations, arXiv:1712.07856 [math.RA], 2017.
FORMULA
G.f.: x(x+1) / (2x^3-3*x+1).
a(0) = 0, a(1) = 1, a(n+2)-2*a(n+1)-2*a(n) = 2.
3*a(n)+2 = Sum_{k>=0} (2*binomial(n,2*k)+3*binomial(n,2*k+1))*3^k.
From Colin Barker, Sep 28 2017: (Start)
a(n) = (-4 - (1-sqrt(3))^n*(-2+sqrt(3)) + (1+sqrt(3))^n*(2+sqrt(3))) / 6.
a(n) = 3*a(n-1) - 2*a(n-2) for n>2.
(End)
PROG
(PARI) concat(0, Vec(x*(1 + x) / ((1 - x)*(1 - 2*x - 2*x^2)) + O(x^30))) \\ Colin Barker, Sep 28 2017
CROSSREFS
KEYWORD
nonn,easy
AUTHOR
J. Devillet, Sep 28 2017
STATUS
approved