login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A293006
Expansion of 2*x^2*(x+1) / (2*x^3-3*x+1).
4
0, 0, 2, 8, 24, 68, 188, 516, 1412, 3860, 10548, 28820, 78740, 215124, 587732, 1605716, 4386900, 11985236, 32744276, 89459028, 244406612, 667731284, 1824275796, 4984014164, 13616579924, 37201188180, 101635536212, 277673448788, 758617970004, 2072582837588
OFFSET
0,3
COMMENTS
Number of associative, quasitrivial, and order-preserving binary operations on the n-element set {1,...,n} that have annihilator elements.
LINKS
M. Couceiro, J. Devillet, and J.-L. Marichal, Quasitrivial semigroups: characterizations and enumerations, arXiv:1709.09162 [math.RA] (2017).
FORMULA
a(n) = 2*A293005(n-1), a(0) = 0.
From Colin Barker, Sep 28 2017: (Start)
a(n) = (-8 + (1-sqrt(3))^(1+n) + (1+sqrt(3))^(1+n)) / 6 for n>0.
a(n) = 3*a(n-1) - 2*a(n-2) for n>3.
(End)
MAPLE
f:= gfun:-rectoproc({a(n) = 3*a(n-1) - 2*a(n-3), a(0)=0, a(1)=0, a(2)=2, a(3)=8}, a(n), remember):
map(f, [$0..100]); # Robert Israel, Sep 28 2017
MATHEMATICA
Join[{0}, LinearRecurrence[{3, 0, -2}, {0, 2, 8}, 30]] (* Jean-François Alcover, Sep 19 2018 *)
PROG
(PARI) concat(vector(2), Vec(2*x^2*(1 + x) / ((1 - x)*(1 - 2*x - 2*x^2)) + O(x^30))) \\ Colin Barker, Sep 28 2017
CROSSREFS
KEYWORD
nonn,easy
AUTHOR
J. Devillet, Sep 28 2017
STATUS
approved