OFFSET
0,3
COMMENTS
Number of associative, quasitrivial, and order-preserving binary operations on the n-element set {1,...,n} that have annihilator elements.
LINKS
Robert Israel, Table of n, a(n) for n = 0..2289
M. Couceiro, J. Devillet, and J.-L. Marichal, Quasitrivial semigroups: characterizations and enumerations, arXiv:1709.09162 [math.RA] (2017).
Index entries for linear recurrences with constant coefficients, signature (3,0,-2).
FORMULA
a(n) = 2*A293005(n-1), a(0) = 0.
From Colin Barker, Sep 28 2017: (Start)
a(n) = (-8 + (1-sqrt(3))^(1+n) + (1+sqrt(3))^(1+n)) / 6 for n>0.
a(n) = 3*a(n-1) - 2*a(n-2) for n>3.
(End)
MAPLE
f:= gfun:-rectoproc({a(n) = 3*a(n-1) - 2*a(n-3), a(0)=0, a(1)=0, a(2)=2, a(3)=8}, a(n), remember):
map(f, [$0..100]); # Robert Israel, Sep 28 2017
MATHEMATICA
Join[{0}, LinearRecurrence[{3, 0, -2}, {0, 2, 8}, 30]] (* Jean-François Alcover, Sep 19 2018 *)
PROG
(PARI) concat(vector(2), Vec(2*x^2*(1 + x) / ((1 - x)*(1 - 2*x - 2*x^2)) + O(x^30))) \\ Colin Barker, Sep 28 2017
CROSSREFS
KEYWORD
nonn,easy
AUTHOR
J. Devillet, Sep 28 2017
STATUS
approved