The OEIS is supported by the many generous donors to the OEIS Foundation.

 Hints (Greetings from The On-Line Encyclopedia of Integer Sequences!)
 A115390 Binomial transform of tribonacci sequence A000073. 6
 0, 0, 1, 4, 12, 34, 96, 272, 772, 2192, 6224, 17672, 50176, 142464, 404496, 1148480, 3260864, 9258528, 26287616, 74638080, 211918912, 601698560, 1708394752, 4850622592, 13772308480, 39103533056, 111026143488, 315235058688 (list; graph; refs; listen; history; text; internal format)
 OFFSET 0,4 COMMENTS See also A117189 Binomial transform of the tribonacci sequence A000073. LINKS Reinhard Zumkeller, Table of n, a(n) for n = 0..1000 J. Pan, Multiple Binomial Transforms and Families of Integer Sequences, J. Int. Seq. 13 (2010), 10.4.2 J. Pan, Some Properties of the Multiple Binomial Transform and the Hankel Transform of Shifted Sequences, J. Int. Seq. 14 (2011) # 11.3.4, remark 14. Eric Weisstein's World of Mathematics, Binomial Transform. Index entries for linear recurrences with constant coefficients, signature (4,-4,2). FORMULA a(n) = SUM[k=0..n] C(n,k)*A000073(k). O.g.f.: -x^2/(-1+4*x-4*x^2+2*x^3). - R. J. Mathar, Apr 02 2008 a(n) = sum(sum(binomial(j-1,k-1)*2^(j-k)*binomial(n-j+k-1,2*k-1),j,k,n-k),k,1,n). - Vladimir Kruchinin, Aug 18 2010 EXAMPLE 1*0 = 0. 1*0 + 1*0 = 0. 1*0 + 2*0 + 1*1 = 1. 1*0 + 3*0 + 3*1 + 1* 1 = 4. 1*0 + 4*0 + 6*1 + 4*1 + 1*2 = 12. MATHEMATICA b[0]=b[1]=0; b[2]=1; b[n_]:=b[n]=b[n-1]+b[n-2]+b[n-3]; a[n_]:=Sum[n!/(k!*(n-k)!)*b[k], {k, 0, n}]; Table[a[n], {n, 0, 27}] (* Farideh Firoozbakht, Mar 11 2006 *) PROG (Maxima) sum(sum(binomial(j-1, k-1)*2^(j-k)*binomial(n-j+k-1, 2*k-1), j, k, n-k), k, 1, n); \\ Vladimir Kruchinin, Aug 18 2010 (Haskell) a115390 n = a115390_list !! n a115390_list = 0 : 0 : 1 : map (* 2) (zipWith (-) a115390_list    (tail \$ map (* 2) \$ zipWith (-) a115390_list (tail a115390_list))) -- Reinhard Zumkeller, Oct 21 2011 CROSSREFS Cf. A000073, A117189. Trisection of A103685. Sequence in context: A293005 A173412 A079818 * A005056 A014143 A077994 Adjacent sequences:  A115387 A115388 A115389 * A115391 A115392 A115393 KEYWORD easy,nonn AUTHOR Jonathan Vos Post, Mar 08 2006 STATUS approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recents
The OEIS Community | Maintained by The OEIS Foundation Inc.

Last modified August 16 12:15 EDT 2022. Contains 356168 sequences. (Running on oeis4.)