login
A117189
Binomial transform of the tribonacci sequence A000073 (shifted left twice).
5
1, 2, 5, 14, 40, 114, 324, 920, 2612, 7416, 21056, 59784, 169744, 481952, 1368400, 3885280, 11031424, 31321376, 88930368, 252498816, 716916544, 2035531648, 5779458048, 16409538688, 46591385856, 132286304768, 375598753024, 1066432564736, 3027907856384
OFFSET
0,2
COMMENTS
a(n)/a(n-1) tends to 2.83928675... = A058265 + 1.
Partial sums are in A073357. - R. J. Mathar, Apr 02 2008
FORMULA
Binomial transform of A000073 starting with A000073(2): (1, 1, 2, 4, 7, 13, ...).
a(n) = 4*a(n-1)-4*a(n-2)+2*a(n-3), n>2. - T. D. Noe, Nov 07 2006
O.g.f.: -(x-1)^2/(-1+4*x-4*x^2+2*x^3). - R. J. Mathar, Apr 02 2008
a(n) = 2*a(n-1) + Sum_{j=1..n-1} j*a(n-j-1), n>=1; with a(0) = 1. - Bob Selcoe, Jun 28 2014
EXAMPLE
a(4) = 14 = 1*1 + 3*1 + 3*2 + 1*4;
a(6) = 324 = 2*114 + 1*40 + 2*14 + 3*5 + 4*2 + 5*1. - Bob Selcoe, Jun 28 2014
MATHEMATICA
CoefficientList[Series[-(x - 1)^2/(-1 + 4*x - 4*x^2 + 2*x^3), {x, 0, 30}], x] (* Wesley Ivan Hurt, Jul 05 2014 *)
LinearRecurrence[{4, -4, 2}, {1, 2, 5}, 40] (* Harvey P. Dale, Oct 10 2016 *)
CROSSREFS
Sequence in context: A229737 A059505 A159035 * A052963 A329275 A036908
KEYWORD
nonn
AUTHOR
Gary W. Adamson, Mar 01 2006
EXTENSIONS
Corrected and extended by T. D. Noe, Nov 07 2006
STATUS
approved