login
A014143
Partial sums of A014138.
11
1, 4, 12, 34, 98, 294, 919, 2974, 9891, 33604, 116103, 406614, 1440025, 5147876, 18550572, 67310938, 245716094, 901759950, 3325066996, 12312494462, 45766188948, 170702447074, 638698318850, 2396598337950
OFFSET
0,2
COMMENTS
Self-convolution of A014137. Column in triangle A200965. - Philippe Deléham, Jan 24 2014
For n >= 2, a(n-2) is the number of 021-avoiding ascent sequences of length n with exactly one occurrence of the consecutive pattern 01. For example, with n=3, a(1)=4 counts 001, 010, 011, 012. - David Callan, Nov 13 2019
REFERENCES
Silvia Heubach and Toufik Mansour, Combinatorics of Compositions and Words, CRC Press, 2010.
LINKS
S. Kitaev, J. Remmel and M. Tiefenbruck, Marked mesh patterns in 132-avoiding permutations I, arXiv preprint arXiv:1201.6243 [math.CO], 2012. - From N. J. A. Sloane, May 09 2012 [An early version on the arXiv had A014043 instead of A014143]
Sergey Kitaev, Jeffrey Remmel, Mark Tiefenbruck, Quadrant Marked Mesh Patterns in 132-Avoiding Permutations II, Electronic Journal of Combinatorial Number Theory, Volume 15 #A16. (arXiv, arXiv:1302.2274 [math.CO], 2013)
FORMULA
G.f.: (1-2*z-sqrt(1-4*z))/(2*z^2*(1-z)^2). - Emeric Deutsch, Jan 27 2003
Recurrence: (n+2)*a(n) = 6*(n+1)*a(n-1) - 3*(3*n+2)*a(n-2) + 2*(2*n+1)*a(n-3). - Vaclav Kotesovec, Oct 07 2012
a(n) ~ 2^(2n+6)/(9*sqrt(Pi)*n^(3/2)). - Vaclav Kotesovec, Oct 07 2012
a(n) = 2 * Sum_{k=0..n} Sum_{j=0..k} C(2*j+1,j)/(j+2). - Vaclav Kotesovec, Oct 27 2012
MATHEMATICA
Table[SeriesCoefficient[(1-2*x-Sqrt[1-4*x])/(2*x^2*(1-x)^2), {x, 0, n}], {n, 0, 20}] (* Vaclav Kotesovec, Oct 07 2012 *)
Table[2*Sum[Sum[Binomial[2*j+1, j]/(j+2), {j, 0, k}], {k, 0, n}], {n, 0, 20}] (* Vaclav Kotesovec, Oct 27 2012 *)
PROG
(PARI) x='x+O('x^66); Vec((1-2*x-sqrt(1-4*x))/(2*x^2*(1-x)^2)) \\ Joerg Arndt, May 04 2013
CROSSREFS
Sequence in context: A079818 A115390 A005056 * A361476 A077994 A077843
KEYWORD
nonn
STATUS
approved