The OEIS Foundation is supported by donations from users of the OEIS and by a grant from the Simons Foundation.

 Hints (Greetings from The On-Line Encyclopedia of Integer Sequences!)
 A014143 Partial sums of A014138. 11
 1, 4, 12, 34, 98, 294, 919, 2974, 9891, 33604, 116103, 406614, 1440025, 5147876, 18550572, 67310938, 245716094, 901759950, 3325066996, 12312494462, 45766188948, 170702447074, 638698318850, 2396598337950 (list; graph; refs; listen; history; text; internal format)
 OFFSET 0,2 COMMENTS Self-convolution of A014137. Column in triangle A200965. - Philippe Deléham, Jan 24 2014 For n >= 2, a(n-2) is the number of 021-avoiding ascent sequences of length n with exactly one occurrence of the consecutive pattern 01. For example, with n=3, a(1)=4 counts 001, 010, 011, 012. - David Callan, Nov 13 2019 REFERENCES Silvia Heubach and Toufik Mansour, Combinatorics of Compositions and Words, CRC Press, 2010. LINKS Vincenzo Librandi, Table of n, a(n) for n = 0..200 S. Kitaev, J. Remmel and M. Tiefenbruck, Marked mesh patterns in 132-avoiding permutations I, arXiv preprint arXiv:1201.6243 [math.CO], 2012. - From N. J. A. Sloane, May 09 2012 [An early version on the arXiv had A014043 instead of A014143] Sergey Kitaev, Jeffrey Remmel, Mark Tiefenbruck, Quadrant Marked Mesh Patterns in 132-Avoiding Permutations II, Electronic Journal of Combinatorial Number Theory, Volume 15 #A16. (arXiv, arXiv:1302.2274 [math.CO], 2013) FORMULA G.f.: (1-2*z-sqrt(1-4*z))/(2*z^2*(1-z)^2). - Emeric Deutsch, Jan 27 2003 Recurrence: (n+2)*a(n) = 6*(n+1)*a(n-1) - 3*(3*n+2)*a(n-2) + 2*(2*n+1)*a(n-3). - Vaclav Kotesovec, Oct 07 2012 a(n) ~ 2^(2n+6)/(9*sqrt(Pi)*n^(3/2)). - Vaclav Kotesovec, Oct 07 2012 a(n) = 2 * Sum_{k=0..n} Sum_{j=0..k} C(2*j+1,j)/(j+2). - Vaclav Kotesovec, Oct 27 2012 MATHEMATICA Table[SeriesCoefficient[(1-2*x-Sqrt[1-4*x])/(2*x^2*(1-x)^2), {x, 0, n}], {n, 0, 20}] (* Vaclav Kotesovec, Oct 07 2012 *) Table[2*Sum[Sum[Binomial[2*j+1, j]/(j+2), {j, 0, k}], {k, 0, n}], {n, 0, 20}] (* Vaclav Kotesovec, Oct 27 2012 *) PROG (PARI) x='x+O('x^66); Vec((1-2*x-sqrt(1-4*x))/(2*x^2*(1-x)^2)) \\ Joerg Arndt, May 04 2013 CROSSREFS Cf. A014137, A200965. Sequence in context: A079818 A115390 A005056 * A077994 A077843 A061703 Adjacent sequences:  A014140 A014141 A014142 * A014144 A014145 A014146 KEYWORD nonn AUTHOR STATUS approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent
The OEIS Community | Maintained by The OEIS Foundation Inc.

Last modified June 19 11:15 EDT 2021. Contains 345127 sequences. (Running on oeis4.)