login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A014043
Inverse of 34th cyclotomic polynomial.
2
1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, -1, -1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, -1, -1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0
OFFSET
0,1
COMMENTS
Periodic with period length 34. - Ray Chandler, Apr 03 2017
LINKS
S. Kitaev, J. Remmel and M. Tiefenbruck, Marked mesh patterns in 132-avoiding permutations I, arXiv preprint arXiv:1201.6243 [math.CO], 2012. - N. J. A. Sloane, May 09 2012
Index entries for linear recurrences with constant coefficients, signature (1, -1, 1, -1, 1, -1, 1, -1, 1, -1, 1, -1, 1, -1, 1, -1).
FORMULA
G.f.: 1/(1 - x + x^2 - x^3 + x^4 - x^5 + ... + x^16). - Ilya Gutkovskiy, Aug 19 2017
MAPLE
with(numtheory, cyclotomic); c := n->series(1/cyclotomic(n, x), x, 80);
MATHEMATICA
CoefficientList[Series[1/Cyclotomic[34, x], {x, 0, 100}], x] (* Vincenzo Librandi, Apr 04 2014 *)
LinearRecurrence[{1, -1, 1, -1, 1, -1, 1, -1, 1, -1, 1, -1, 1, -1, 1, -1}, {1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0}, 81] (* Ray Chandler, Sep 15 2015 *)
PROG
(PARI) Vec(1/polcyclo(34)+O(x^99)) \\ Charles R Greathouse IV, Mar 24 2014
(Magma) t:=34; u:=3; m:=u*t+2; R<x>:=PowerSeriesRing(Integers(), m); Coefficients(R!(1/CyclotomicPolynomial(t))); // Bruno Berselli, Apr 04 2014
CROSSREFS
Column k=34 of A291137.
Sequence in context: A016411 A205987 A014026 * A016422 A016399 A016383
KEYWORD
sign,easy
AUTHOR
STATUS
approved