login
A014042
Inverse of 33rd cyclotomic polynomial.
1
1, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, -1, -1, -1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, -1, -1, -1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, -1, -1, -1, 0
OFFSET
0,1
COMMENTS
Periodic with period length 33. - Ray Chandler, Apr 03 2017
LINKS
FORMULA
G.f.: 1/(1 - x + x^3 - x^4 + x^6 - x^7 + x^9 - x^10 + x^11 - x^13 + x^14 - x^16 + x^17 - x^19 + x^20). - Ilya Gutkovskiy, Aug 19 2017
a(n) = (18*m^10 - 950*m^9 + 21645*m^8 - 278400*m^7 + 2216844*m^6 - 11256630*m^5 + 36087705*m^4 - 69333700*m^3 + 70537788*m^2 - 27994320*m + 1814400) * (3*w^2 - 7*w + 2) / 3628800 where m = (n mod 11) and w = (floor(n/11) mod 3). - Luce ETIENNE, Nov 20 2018
MAPLE
with(numtheory, cyclotomic); c := n->series(1/cyclotomic(n, x), x, 80);
MATHEMATICA
CoefficientList[Series[1/Cyclotomic[33, x], {x, 0, 100}], x] (* Vincenzo Librandi, Apr 04 2014 *)
LinearRecurrence[{1, 0, -1, 1, 0, -1, 1, 0, -1, 1, -1, 0, 1, -1, 0, 1, -1, 0, 1, -1}, {1, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, -1, -1, -1, 0, 0, 0, 0, 0, 0}, 81] (* Ray Chandler, Sep 15 2015 *)
PROG
(PARI) Vec(1/polcyclo(33)+O(x^99)) \\ Charles R Greathouse IV, Mar 24 2014
(Magma) t:=33; u:=3; m:=u*t+3; R<x>:=PowerSeriesRing(Integers(), m); Coefficients(R!(1/CyclotomicPolynomial(t))); // Bruno Berselli, Apr 04 2014
CROSSREFS
Column k=33 of A291137.
Sequence in context: A014111 A014048 A014087 * A014075 A204269 A371690
KEYWORD
sign,easy
AUTHOR
STATUS
approved