login
A014144
Apply partial sum operator twice to factorials.
10
0, 1, 3, 7, 17, 51, 205, 1079, 6993, 53227, 462341, 4500255, 48454969, 571411283, 7321388397, 101249656711, 1502852293025, 23827244817339, 401839065437653, 7182224591785967, 135607710526966281, 2696935204638786595, 56349204870460046909, 1234002202313888987223
OFFSET
0,3
COMMENTS
Equals row sums of triangle A137948 starting with offset 1. - Gary W. Adamson, Feb 28 2008
If s(n) is a sequence defined as s(0)=a, s(1)=b, s(n) = n*(s(n-1) - s(n-2)), n>1, then s(n) = n*b - (a(n)-1)*a. - Gary Detlefs, Feb 23 2011
LINKS
G. V. Milovanovich and A. Petojevich, Generalized Factorial Functions, Numbers and Polynomials, Math. Balkanica, Vol. 16 (2002), Fasc. 1-4.
Alexsandar Petojevic, The Function vM_m(s; a; z) and Some Well-Known Sequences, Journal of Integer Sequences, Vol. 5 (2002), Article 02.1.7.
FORMULA
a(n) = (n-1) * !n - n! + 1, !n = Sum_{k=0..n-1} k!. - Joe Keane (jgk(AT)jgk.org)
a(n) = convolution(A000142, A001477). - Peter Luschny, Jan 21 2012
G.f.: x*G(0)/(1-x)^2, where G(k)= 1 + (2*k + 1)*x/( 1 - 2*x*(k+1)/(2*x*(k+1) + 1/G(k+1))); (continued fraction). - Sergei N. Gladkovskii, May 24 2013
MAPLE
b:= proc(n) option remember; `if`(n<0, [0$2],
(q-> (f-> [f[2]+q, q]+f)(b(n-1)))(n!))
end:
a:= n-> b(n-1)[1]:
seq(a(n), n=0..25); # Alois P. Heinz, Feb 13 2022
MATHEMATICA
Join[{0}, Accumulate@ Accumulate@ (Range[0, 19]!)] (* Robert G. Wilson v *)
PROG
(PARI) a(n)=(n-1)*round(n!/exp(1))-n!+1 \\ Charles R Greathouse IV, Feb 24 2011
(Magma) [(k-1)*(&+[Factorial(j): j in [0..k-1]]) - Factorial(k) + 1: k in [1..25]]; // G. C. Greubel, Sep 03 2018
CROSSREFS
KEYWORD
nonn,easy
STATUS
approved