OFFSET
0,4
COMMENTS
Examples of the morphism starting with {1} are shown in A103684. Counting the total number of '1' in rows 1 to n of A103684 yields 1, 3, 8,... = A073357(n+1),
counting the total number of '2' in rows 1 to n yields 0, 1, 4,.. = A115390(n+1),
and counting the total number '3' in rows 1 to n yields a(n), the sequence here.
Inverse binomial transform yields 0, 0, 1, 2, 3, 6, 11, 20,..., a variant of A001590 [Nov 18 2010]
LINKS
Index entries for linear recurrences with constant coefficients, signature (5,-8,6,-2).
FORMULA
a(n)= +5*a(n-1) -8*a(n-2) +6*a(n-3) -2*a(n-4) = a(n-1)+A115390(n). [Nov 18 2010]
G.f.: x^2 / ( (x-1)*(2*x^3-4*x^2+4*x-1) ). [Nov 18 2010]
MATHEMATICA
LinearRecurrence[{5, -8, 6, -2}, {0, 0, 1, 5}, 30] (* Harvey P. Dale, Nov 10 2011 *)
CROSSREFS
KEYWORD
nonn,easy
AUTHOR
Roger L. Bagula, Mar 26 2005
EXTENSIONS
STATUS
approved