login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A103688
a(n) = n if A103689(n)*n +/- 1 are twin primes; a(n) = 0 otherwise.
1
0, 0, 0, 4, 0, 6, 0, 0, 9, 0, 0, 12, 0, 0, 15, 0, 0, 18, 0, 0, 21, 0, 0, 0, 0, 0, 0, 0, 0, 30, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 42, 0, 0, 0, 0, 47, 0, 0, 0, 51, 0, 0, 0, 0, 0, 0, 0, 0, 60, 0, 0, 0, 0, 0, 0, 0, 0, 69, 0, 0, 72, 0, 0, 75, 0, 0, 0, 0, 0, 0, 0
OFFSET
1,4
EXAMPLE
For n=5 2*5-1=9 is not prime, 2*5+1=11 is prime so a(5)=0.
For n=6 1*6-1=5 is prime, 1*6+1=7 is prime, 5 and 7 are twin primes so a(6)=6.
MATHEMATICA
lktp[n_]:=Module[{k=1}, While[NoneTrue[k*n+{1, -1}, PrimeQ], k++]; If[AllTrue[k*n+{1, -1}, PrimeQ], n, 0]]; Array[lktp, 100] (* The program uses the functions NoneTrue and AllTrue from Mathematica version 10 *) (* Harvey P. Dale, Sep 09 2014 *)
PROG
(PARI)
a(n)=k=1; while(!isprime(k*n+1)&&!isprime(k*n-1), k++); k
for(n=1, 100, if(isprime(a(n)*n+1)&&isprime(a(n)*n-1), print1(n, ", ")); print1(0, ", ")) \\ Derek Orr, Sep 09 2014
CROSSREFS
Cf. A103689.
Sequence in context: A126813 A056141 A246004 * A125961 A016681 A210625
KEYWORD
easy,nonn
AUTHOR
Pierre CAMI, Feb 12 2005
EXTENSIONS
Corrected by Harvey P. Dale, Sep 09 2014
Definition simplified by Derek Orr, Sep 09 2014
STATUS
approved