login
A103688
a(n) = n if A103689(n)*n +/- 1 are twin primes; a(n) = 0 otherwise.
1
0, 0, 0, 4, 0, 6, 0, 0, 9, 0, 0, 12, 0, 0, 15, 0, 0, 18, 0, 0, 21, 0, 0, 0, 0, 0, 0, 0, 0, 30, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 42, 0, 0, 0, 0, 47, 0, 0, 0, 51, 0, 0, 0, 0, 0, 0, 0, 0, 60, 0, 0, 0, 0, 0, 0, 0, 0, 69, 0, 0, 72, 0, 0, 75, 0, 0, 0, 0, 0, 0, 0
OFFSET
1,4
EXAMPLE
For n=5 2*5-1=9 is not prime, 2*5+1=11 is prime so a(5)=0.
For n=6 1*6-1=5 is prime, 1*6+1=7 is prime, 5 and 7 are twin primes so a(6)=6.
MATHEMATICA
lktp[n_]:=Module[{k=1}, While[NoneTrue[k*n+{1, -1}, PrimeQ], k++]; If[AllTrue[k*n+{1, -1}, PrimeQ], n, 0]]; Array[lktp, 100] (* The program uses the functions NoneTrue and AllTrue from Mathematica version 10 *) (* Harvey P. Dale, Sep 09 2014 *)
PROG
(PARI)
a(n)=k=1; while(!isprime(k*n+1)&&!isprime(k*n-1), k++); k
for(n=1, 100, if(isprime(a(n)*n+1)&&isprime(a(n)*n-1), print1(n, ", ")); print1(0, ", ")) \\ Derek Orr, Sep 09 2014
CROSSREFS
Cf. A103689.
Sequence in context: A126813 A056141 A246004 * A125961 A016681 A210625
KEYWORD
easy,nonn
AUTHOR
Pierre CAMI, Feb 12 2005
EXTENSIONS
Corrected by Harvey P. Dale, Sep 09 2014
Definition simplified by Derek Orr, Sep 09 2014
STATUS
approved