login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A126813
Ramanujan numbers (A000594) read mod 8.
2
1, 0, 4, 0, 6, 0, 0, 0, 5, 0, 4, 0, 6, 0, 0, 0, 2, 0, 4, 0, 0, 0, 0, 0, 7, 0, 0, 0, 6, 0, 0, 0, 0, 0, 0, 0, 6, 0, 0, 0, 2, 0, 4, 0, 6, 0, 0, 0, 1, 0, 0, 0, 6, 0, 0, 0, 0, 0, 4, 0, 6, 0, 0, 0, 4, 0, 4, 0, 0, 0, 0, 0, 2, 0, 4, 0, 0, 0, 0, 0, 1, 0, 4, 0, 4, 0, 0, 0, 2, 0, 0, 0, 0, 0, 0, 0, 2, 0, 4, 0, 6, 0, 0, 0, 0
OFFSET
1,3
LINKS
R. P. Bambah, S. Chowla and H. Gupta, A congruence property of Ramanujan’s function tau(n), Bull. Amer. Math. Soc. 53 (1947), 766-767.
H. P. F. Swinnerton-Dyer, On l-adic representations and congruences for coefficients of modular forms, pp. 1-55 of Modular Functions of One Variable III (Antwerp 1972), Lect. Notes Math., 350, 1973.
FORMULA
For all odd n, a(n) = sigma(n) mod 8 = A105827(n). - Michel Marcus, Apr 25 2016
MATHEMATICA
Mod[RamanujanTau@ #, 8] &@ Range@ 120 (* Michael De Vlieger, Apr 25 2016 *)
PROG
(PARI) A126813(n) = (ramanujantau(n)%8); \\ Antti Karttunen, Nov 26 2017
(PARI) a(n)=my(e=valuation(n, 2)); ramanujantau(2^e)*sigma(n>>e)%8 \\ Charles R Greathouse IV, Sep 09 2022
CROSSREFS
KEYWORD
nonn,easy
AUTHOR
N. J. A. Sloane, Feb 25 2007
STATUS
approved