login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A308678
Kuba-Panholzer Table 2 pattern 231, 132 for Stirling permutation k = 2.
0
0, 4, 0, 5, 26, 135, 685, 3453, 17379, 87503, 441101, 2226900, 11260144, 57023761, 289204167, 1468757683, 7468800180, 38024694279, 193801106977, 988750469868, 5049220893012, 25807115270500, 132009416652052, 675765729570936, 3461711974830844, 17744712728166057
OFFSET
0,2
LINKS
Markus Kuba, Alois Panholzer, Stirling permutations containing a single pattern of length three, Australasian Journal of Combinatorics (2019) Vol. 74, No. 2, 216-239.
FORMULA
For k = 2, a(n) = Sum_{j = 0..(n - 1)} (binomial(n - 1, j) * (k^2 * binomial(n + j (k - 1) + k - 4, n - j - 4) + (k - 1) * binomial(n + j (k - 1) + k - 3, n - j - 2) + binomial(n + j (k - 1) + k - 2, n - j - 1) - (2 k - 1) * binomial(n + j (k - 1) - 3, n - j - 2) - binomial(n + j (k - 1) - 2, n - j - 1)))
MATHEMATICA
With[{k = 2}, Table[Sum[Binomial[n - 1, j] (k^2*Binomial[n + j (k - 1) + k - 4, n - j - 4] + (k - 1) Binomial[n + j (k - 1) + k - 3, n - j - 2] + Binomial[n + j (k - 1) + k - 2, n - j - 1] - (2 k - 1) Binomial[n + j (k - 1) - 3, n - j - 2] - Binomial[n + j (k - 1) - 2, n - j - 1]), {j, 0, n - 1}], {n, 0, 25}]]
CROSSREFS
Sequence in context: A108174 A134530 A351571 * A184365 A126813 A056141
KEYWORD
nonn,easy
AUTHOR
Michael De Vlieger, Jun 16 2019
STATUS
approved