login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A308677
Kuba-Panholzer Table 2 pattern 312, 213 for Stirling permutation k = 2.
0
3, 23, 155, 1014, 6580, 42636, 276507, 1796300, 11692395, 76257675, 498286932, 3261636728, 21384163320, 140407901032, 923165093595, 6077239852824, 40052346318985, 264243349910925, 1745013401135235, 11533997779931550, 76298933599198800, 505113085597039920, 3346315941511650900
OFFSET
3,1
LINKS
Markus Kuba, Alois Panholzer, Stirling permutations containing a single pattern of length three, Australasian Journal of Combinatorics (2019) Vol. 74, No. 2, 216-239.
FORMULA
For k = 2, a(n) = binomial(n*k - 2k + n - 1, n - 1) - (1 / k(n - 1) + 1) binomial((k + 1)(n - 1)/(n - 1))
MATHEMATICA
With[{k = 2}, Table[Binomial[k n + n - 2 k - 1, n - 1] - (1/(k (n - 1) + 1)) Binomial[(k + 1) (n - 1), n - 1], {n, 3, 25}]]
CROSSREFS
Sequence in context: A197176 A264461 A006184 * A209011 A164536 A037789
KEYWORD
nonn,easy
AUTHOR
Michael De Vlieger, Jun 16 2019
STATUS
approved