login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A308675
a(n) = Sum_{d|n} d^(d^2 * n).
2
1, 257, 7625597484988, 340282366920938463463374607431768276993, 2350988701644575015937473074444491355637331113544175043017503412556834518909454345703126
OFFSET
1,2
COMMENTS
The next term has 169 digits. - Harvey P. Dale, Feb 29 2020
FORMULA
L.g.f.: -log(Product_{k>=1} (1 - (k^(k^2)*x)^k)^(1/k)) = Sum_{k>=1} a(k)*x^k/k.
MATHEMATICA
Table[Total[#^(#^2 n)&/@Divisors[n]], {n, 5}] (* Harvey P. Dale, Feb 29 2020 *)
a[n_] := DivisorSum[n, #^(n * #^2) &]; Array[a, 5] (* Amiram Eldar, May 11 2021 *)
PROG
(PARI) {a(n) = sumdiv(n, d, d^(d^2*n))}
(PARI) N=10; x='x+O('x^N); Vec(x*deriv(-log(prod(k=1, N, (1-(k^k^2*x)^k)^(1/k)))))
CROSSREFS
Column k=3 of A308676.
Sequence in context: A194155 A238614 A308672 * A121237 A161683 A250741
KEYWORD
nonn
AUTHOR
Seiichi Manyama, Jun 16 2019
STATUS
approved