login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A137500
Binomial transform of b(n) = (0, 0, A007910).
1
0, 0, 1, 5, 17, 51, 149, 439, 1309, 3927, 11797, 35423, 106301, 318903, 956645, 2869807, 8609293, 25827879, 77483893, 232452191, 697357085, 2092071255, 6276212741, 18828636175, 56485906477, 169457719431, 508373162389, 1525119495359, 4575358494269, 13726075482807
OFFSET
0,4
COMMENTS
b(n) is binomial transform of (0, 0, A077973).
FORMULA
a(n) = 3*a(n-1) + A009545(n-1) for n > 0.
From Andrew Howroyd, Jan 03 2020: (Start)
a(n) = Sum_{k=0..n-2} binomial(n, k+2)*A007910(k).
a(n) = 5*a(n-1) - 8*a(n-2) + 6*a(n-3) for n >= 3.
G.f.: x*2/((1 - 3*x)*(1 - 2*x + 2*x^2)). (End)
MATHEMATICA
LinearRecurrence[{5, -8, 6}, {0, 0, 1}, 40] (* Harvey P. Dale, Sep 27 2020 *)
PROG
(PARI) concat([0, 0], Vec(1/((1 - 3*x)*(1 - 2*x + 2*x^2)) + O(x^40))) \\ Andrew Howroyd, Jan 03 2020
CROSSREFS
Sequence in context: A103685 A116521 A290900 * A146814 A034335 A337033
KEYWORD
nonn,easy
AUTHOR
Paul Curtz, Apr 27 2008
EXTENSIONS
Terms a(11) and beyond from Andrew Howroyd, Jan 03 2020
STATUS
approved