login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

Binomial transform of b(n) = (0, 0, A007910).
1

%I #8 Sep 27 2020 17:33:55

%S 0,0,1,5,17,51,149,439,1309,3927,11797,35423,106301,318903,956645,

%T 2869807,8609293,25827879,77483893,232452191,697357085,2092071255,

%U 6276212741,18828636175,56485906477,169457719431,508373162389,1525119495359,4575358494269,13726075482807

%N Binomial transform of b(n) = (0, 0, A007910).

%C b(n) is binomial transform of (0, 0, A077973).

%H Andrew Howroyd, <a href="/A137500/b137500.txt">Table of n, a(n) for n = 0..1000</a>

%H <a href="/index/Rec#order_03">Index entries for linear recurrences with constant coefficients</a>, signature (5,-8,6).

%F a(n) = 3*a(n-1) + A009545(n-1) for n > 0.

%F From _Andrew Howroyd_, Jan 03 2020: (Start)

%F a(n) = Sum_{k=0..n-2} binomial(n, k+2)*A007910(k).

%F a(n) = 5*a(n-1) - 8*a(n-2) + 6*a(n-3) for n >= 3.

%F G.f.: x*2/((1 - 3*x)*(1 - 2*x + 2*x^2)). (End)

%t LinearRecurrence[{5,-8,6},{0,0,1},40] (* _Harvey P. Dale_, Sep 27 2020 *)

%o (PARI) concat([0,0], Vec(1/((1 - 3*x)*(1 - 2*x + 2*x^2)) + O(x^40))) \\ _Andrew Howroyd_, Jan 03 2020

%Y Cf. A007910, A009545.

%K nonn,easy

%O 0,4

%A _Paul Curtz_, Apr 27 2008

%E Terms a(11) and beyond from _Andrew Howroyd_, Jan 03 2020