The OEIS is supported by the many generous donors to the OEIS Foundation.

 Hints (Greetings from The On-Line Encyclopedia of Integer Sequences!)
 A374185 a(n) = floor(Integral_{t=0..n} floor(exp(t)) dt). The Waldvogel sequence. 1
 0, 1, 5, 17, 51, 144, 399, 1092 (list; graph; refs; listen; history; text; internal format)
 OFFSET 0,3 COMMENTS Named after Prof. Jörg Waldvogel (Swiss mathematician). For the variant using the ceiling of the approximation see A374186. LINKS Table of n, a(n) for n=0..7. Pedro Gonnet, A Review of Error Estimation in Adaptive Quadrature, ACM Computing Surveys, 2012, arXiv:1003.4629 [cs.NA]. (p. 31, 32.) MAPLE Digits := 40: W := n -> evalf(int(floor(exp(t)), t = 0...n)): for n from 0 to 6 do floor(W(n)) od; # recommended: plot(floor(exp(t)), t = 0..4); CROSSREFS Variant: A374186. Cf. A245285, A128104. Sequence in context: A196283 A196333 A039783 * A103685 A116521 A290900 Adjacent sequences: A374182 A374183 A374184 * A374186 A374187 A374188 KEYWORD nonn,more,hard AUTHOR Peter Luschny, Jul 06 2024 STATUS approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recents
The OEIS Community | Maintained by The OEIS Foundation Inc.

Last modified August 6 22:15 EDT 2024. Contains 374998 sequences. (Running on oeis4.)