|
|
A180224
|
|
a(n+1) is the least k such that 1/(a(n)+1) + 1/(a(n)+2) + ... + 1/k > 1, with a(1) = 1.
|
|
1
|
|
|
1, 4, 12, 34, 94, 257, 700, 1904, 5177, 14074, 38258, 103997, 282695, 768446, 2088854, 5678095, 15434664, 41955768, 114047603, 310013528, 842704141, 2290707355, 6226788179, 16926165158, 46010087176, 125068383898, 339971115266, 924137304830, 2512065642722, 6828502388509
(list;
graph;
refs;
listen;
history;
text;
internal format)
|
|
|
OFFSET
|
1,2
|
|
LINKS
|
Table of n, a(n) for n=1..30.
|
|
FORMULA
|
a(n) = A103762(a(n-1) + 1) for n > 1. - Jinyuan Wang, Mar 05 2020
|
|
EXAMPLE
|
1/2 = 0.5, 1/2 + 1/3 = 0.833..., 1/2 + 1/3 + 1/4 = 1.0833... > 1, so a(2) = 4.
|
|
PROG
|
(PARI) default(realprecision, 10^5); e=exp(1);
lista(nn) = {my(k=1); print1(k); for(n=2, nn, print1(", ", k=floor(e*k+(e+1)/2+(e-1/e)/(24*(n+1/2))))); } \\ Jinyuan Wang, Mar 05 2020
|
|
CROSSREFS
|
Cf. A103762.
Sequence in context: A307305 A176753 A248873 * A293005 A173412 A079818
Adjacent sequences: A180221 A180222 A180223 * A180225 A180226 A180227
|
|
KEYWORD
|
nonn
|
|
AUTHOR
|
Pierre CAMI, Aug 16 2010
|
|
EXTENSIONS
|
Name clarified by and more terms from Jinyuan Wang, Mar 05 2020
|
|
STATUS
|
approved
|
|
|
|