OFFSET
1,3
LINKS
Nathaniel Johnston, Table of n, a(n) for n = 1..500
Index entries for linear recurrences with constant coefficients, signature (4,8).
FORMULA
a(n) = 2^(n-3)*((1+sqrt(3))^(n-1)-(1-sqrt(3))^(n-1))/sqrt(3). - Rolf Pleisch, May 14 2011
a(n) = (-1)^n*A174443(n-1). - Nathaniel Johnston, May 14 2011
G.f.: x^2/(1-4*x-8*x^2).
a(n+2) = Sum_{k=0..n} A201947(n,k)*3^(n-k). - Philippe Deléham, Dec 07 2011
a(n+2) = 2^n*A002605(n+1). - R. J. Mathar, May 07 2019
MATHEMATICA
Join[{a=0, b=1}, Table[c=4*b+8*a; a=b; b=c, {n, 100}]]
LinearRecurrence[{4, 8}, {0, 1}, 30] (* G. C. Greubel, Jan 16 2018 *)
PROG
(PARI) concat(0, Vec(1/(1-4*x-8*x^2)+O(x^98))) \\ Charles R Greathouse IV, Dec 07 2011
(Magma) I:=[0, 1]; [n le 2 select I[n] else 4*Self(n-1) + 8*Self(n-2): n in [1..30]]; // G. C. Greubel, Jan 16 2018
CROSSREFS
KEYWORD
nonn,easy
AUTHOR
Vladimir Joseph Stephan Orlovsky, Jan 16 2011
STATUS
approved