login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A180222
a(n) = 4*a(n-1) + 8*a(n-2), with a(1)=0 and a(2)=1.
14
0, 1, 4, 24, 128, 704, 3840, 20992, 114688, 626688, 3424256, 18710528, 102236160, 558628864, 3052404736, 16678649856, 91133837312, 497964548096, 2720928890880, 14867431948288, 81237158920192, 443888091267072, 2425449636429824, 13252903275855872
OFFSET
1,3
FORMULA
a(n) = 2^(n-3)*((1+sqrt(3))^(n-1)-(1-sqrt(3))^(n-1))/sqrt(3). - Rolf Pleisch, May 14 2011
a(n) = (-1)^n*A174443(n-1). - Nathaniel Johnston, May 14 2011
G.f.: x^2/(1-4*x-8*x^2).
a(n+2) = Sum_{k=0..n} A201947(n,k)*3^(n-k). - Philippe Deléham, Dec 07 2011
a(n+2) = 2^n*A002605(n+1). - R. J. Mathar, May 07 2019
MATHEMATICA
Join[{a=0, b=1}, Table[c=4*b+8*a; a=b; b=c, {n, 100}]]
LinearRecurrence[{4, 8}, {0, 1}, 30] (* G. C. Greubel, Jan 16 2018 *)
PROG
(PARI) concat(0, Vec(1/(1-4*x-8*x^2)+O(x^98))) \\ Charles R Greathouse IV, Dec 07 2011
(Magma) I:=[0, 1]; [n le 2 select I[n] else 4*Self(n-1) + 8*Self(n-2): n in [1..30]]; // G. C. Greubel, Jan 16 2018
CROSSREFS
Sequence in context: A103455 A289715 A174443 * A192070 A048180 A057391
KEYWORD
nonn,easy
AUTHOR
STATUS
approved