login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A166294
Number of peaks at even level in all Dyck paths of semilength n with no UUU's and no DDD's, (U=(1,1), D=(1,-1)). These Dyck paths are counted by the secondary structure numbers (A004148).
4
0, 1, 4, 12, 34, 92, 242, 628, 1616, 4138, 10570, 26970, 68798, 175545, 448176, 1145058, 2927924, 7493021, 19191836, 49195806, 126205062, 324000494, 832371414, 2139802870, 5504256592, 14166936063, 36483006046, 94000206216
OFFSET
1,3
LINKS
FORMULA
a(n) = Sum_{k=0..n-1} k*A166293(n,k).
G.f.: G=z[z - 1 + (1 - z + z^2)g(z)]/[(1 - z - z^2)(1 - z - z^2 - 2z^3*g(z)], where g=g(z) satisfies g = 1 + zg + z^2*g + z^3*g^2.
a(n) ~ sqrt(55 + 123/sqrt(5)) * (3+sqrt(5))^n / (sqrt(Pi*n) * 2^(n+5/2)). - Vaclav Kotesovec, Mar 20 2014
Equivalently, a(n) ~ phi^(2*n + 5) / (4 * 5^(1/4) * sqrt(Pi*n)), where phi = A001622 is the golden ratio. - Vaclav Kotesovec, Dec 07 2021
EXAMPLE
a(3)=4 because the paths UDUDUD, UDU(UD)D, U(UD)DUD, and U(UD)(UD)D have 0 + 1 + 1 + 2 = 4 peaks at even level (shown between parentheses).
MAPLE
g := ((1-z-z^2-sqrt(1-2*z-z^2-2*z^3+z^4))*1/2)/z^3: G := z*(z-1+(1-z+z^2)*g)/((1-z-z^2)*(1-z-z^2-2*z^3*g)): Gser := series(G, z = 0, 35): seq(coeff(Gser, z, n), n = 1 .. 30);
MATHEMATICA
Rest[CoefficientList[Series[x*(x-1+(1-x+x^2)*((1-x-x^2-Sqrt[1-2*x-x^2-2*x^3+x^4])*1/2)/x^3)/((1-x-x^2)*(1-x-x^2-2*x^3*((1-x-x^2-Sqrt[1-2*x-x^2-2*x^3+x^4])*1/2)/x^3)), {x, 0, 20}], x]] (* Vaclav Kotesovec, Mar 20 2014 *)
CROSSREFS
KEYWORD
nonn
AUTHOR
Emeric Deutsch, Oct 12 2009
STATUS
approved