login
A110334
Number of peakless Motzkin paths of length n having no valleys (i.e., (1,-1) followed by (1,1)) at level zero (can be easily translated into RNA secondary structure terminology).
1
1, 1, 1, 2, 4, 8, 16, 33, 70, 152, 336, 754, 1714, 3940, 9145, 21406, 50478, 119814, 286045, 686456, 1655053, 4007131, 9738812, 23750895, 58106547, 142569506, 350738607, 864980279, 2138034715, 5295877279, 13143521437, 32679745904
OFFSET
0,4
COMMENTS
Column 0 of A110333.
LINKS
W. R. Schmitt and M. S. Waterman, Linear trees and RNA secondary structure, Discrete Appl. Math., 51, 317-323, 1994.
P. R. Stein and M. S. Waterman, On some new sequences generalizing the Catalan and Motzkin numbers, Discrete Math., 26 (1978), 261-272.
M. Vauchassade de Chaumont and G. Viennot, Polynômes orthogonaux et problèmes d'énumération en biologie moléculaire, Publ. I.R.M.A. Strasbourg, 1984, 229/S-08, Actes 8e Sem. Lotharingien, pp. 79-86.
FORMULA
G.f.: (3-z-z^2-Q)/(2-3z+z^2+z^3+zQ), where Q=sqrt(1-2z-z^2-2z^3+z^4).
D-finite with recurrence n*a(n) +(-5*n+3)*a(n-1) +2*(4*n-3)*a(n-2) +(-5*n+9)*a(n-3) +3*(n-8)*a(n-4) +6*(-n+7)*a(n-5) +2*(n-9)*a(n-6) +(n-6)*a(n-7) +3*(-n+5)*a(n-8) +(n-6)*a(n-9)=0. - R. J. Mathar, Jul 24 2022
EXAMPLE
a(6)=16 because among the 17 (=A004148(6)) peakless Motzkin paths of length 6 only UH(DU)HD has a valley at level 0 (shown between parentheses; here U=(1,1), H=(1,0), D=(1,-1) ).
MAPLE
G:=(3-z-z^2-sqrt(1-2*z-z^2-2*z^3+z^4))/(2-3*z+z^2+z^3+z*sqrt(1-2*z-z^2-2*z^3+z^4)): Gser:=series(G, z=0, 37): 1, seq(coeff(Gser, z^n), n=1..34);
CROSSREFS
Sequence in context: A368461 A317880 A299271 * A357904 A084636 A352044
KEYWORD
nonn
AUTHOR
Emeric Deutsch, Jul 20 2005
STATUS
approved