login
A089738
Triangle of T(n,k)=number of peakless Motzkin paths of length n containing k valleys (can be easily expressed using RNA secondary structure terminology).
0
1, 1, 1, 2, 4, 8, 16, 1, 33, 4, 69, 13, 146, 38, 1, 312, 106, 5, 673, 284, 21, 1463, 742, 77, 1, 3202, 1904, 261, 6, 7050, 4823, 831, 31, 15605, 12096, 2534, 136, 1, 34705, 30106, 7474, 540, 7, 77511, 74484, 21480, 1984, 43
OFFSET
0,4
COMMENTS
Rows 0,1,2 contain one entry each and row n (n>=3) contains floor(n/3) entries.
REFERENCES
P. R. Stein and M. S. Waterman, On some new sequences generalizing the Catalan and Motzkin numbers, Discrete Math., 26, 1979, 261-272.
M. Vauchassade de Chaumont and G. Viennot, Polynomes orthogonaux et problemes d'enumeration en biologie moleculaire, Publ. I.R.M.A. Strasbourg, 1984, 229/S-08, Actes 8e Sem. Lotharingien, pp. 79-86.
LINKS
M. S. Waterman, Home Page (contains copies of his papers)
M. Vauchassade de Chaumont and G. Viennot, Polynomes orthogonaux at problemes d'enumeration en biologie moleculaire, Sem. Loth. Comb. B08l (1984) 79-86.
FORMULA
G.f. G(t, z) satisfies G=1+zG+z^2*(G-1)[G-(1-t)(G-1-zG)].
EXAMPLE
T(7,1)=4 because we have HUH(DU)HD, UH(DU)HDH, UH(DU)HHD and UHH(DU)HD, where U=(1,1), D=(1,-1) and H=(1,0); the valleys are shown between parentheses.
CROSSREFS
Row sums give A004148.
Sequence in context: A317506 A317501 A097777 * A110333 A247292 A069783
KEYWORD
nonn,tabf
AUTHOR
Emeric Deutsch, Jan 07 2004
STATUS
approved