login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A373343
Array read by ascending antidiagonals: A(n,k) is the number of cyclic de Bruijn sequences of order k and alphabet of size n, with k > 0.
2
1, 1, 1, 2, 1, 1, 6, 24, 2, 1, 24, 20736, 373248, 16, 1, 120, 995328000, 189321481108517289984, 12635683568857645056, 2048, 1
OFFSET
1,4
COMMENTS
The 7th antidiagonal is too large to be included in Data.
LINKS
D. Condon, Yuxin Wang, and E. Yang, De Bruijn Polyominoes, arXiv:2405.18543 [math.CO], 2024. See page 5.
T. van Aardenne-Ehrenfest and N. G. de Brujin, Circuits and Trees in Oriented Linear Graphs. In: Simon Stevin 28 (1951), pp. 203-217.
FORMULA
A(n,k) = (n!)^(n^(k-1))/n^k.
A(n,k) = A373341(n,k)/A003992(n,k).
EXAMPLE
The array begins:
1, 1, 1, 1, ...
1, 1, 2, 16, ...
2, 24, 373248, 12635683568857645056, ...
...
MATHEMATICA
A[n_, k_]:=(n!)^(n^(k-1))/n^k; Table[A[n-k+1, k], {n, 6}, {k, n}]//Flatten
CROSSREFS
Cf. A000012 (n=1), A000142 (k=1), A003992, A016031 (n=2), A373341 (acyclic), A373344 (antidiagonal sums).
Sequence in context: A214631 A025270 A249450 * A331501 A247450 A178234
KEYWORD
nonn,tabl
AUTHOR
Stefano Spezia, Jun 01 2024
STATUS
approved