login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

Array read by ascending antidiagonals: A(n,k) is the number of cyclic de Bruijn sequences of order k and alphabet of size n, with k > 0.
2

%I #13 Jun 03 2024 18:21:48

%S 1,1,1,2,1,1,6,24,2,1,24,20736,373248,16,1,120,995328000,

%T 189321481108517289984,12635683568857645056,2048,1

%N Array read by ascending antidiagonals: A(n,k) is the number of cyclic de Bruijn sequences of order k and alphabet of size n, with k > 0.

%C The 7th antidiagonal is too large to be included in Data.

%H D. Condon, Yuxin Wang, and E. Yang, <a href="https://arxiv.org/abs/2405.18543">De Bruijn Polyominoes</a>, arXiv:2405.18543 [math.CO], 2024. See page 5.

%H T. van Aardenne-Ehrenfest and N. G. de Brujin, <a href="https://pure.tue.nl/ws/files/3311129/597493.pdf">Circuits and Trees in Oriented Linear Graphs</a>. In: Simon Stevin 28 (1951), pp. 203-217.

%F A(n,k) = (n!)^(n^(k-1))/n^k.

%F A(n,k) = A373341(n,k)/A003992(n,k).

%e The array begins:

%e 1, 1, 1, 1, ...

%e 1, 1, 2, 16, ...

%e 2, 24, 373248, 12635683568857645056, ...

%e ...

%t A[n_,k_]:=(n!)^(n^(k-1))/n^k; Table[A[n-k+1,k],{n,6},{k,n}]//Flatten

%Y Cf. A000012 (n=1), A000142 (k=1), A003992, A016031 (n=2), A373341 (acyclic), A373344 (antidiagonal sums).

%K nonn,tabl

%O 1,4

%A _Stefano Spezia_, Jun 01 2024