OFFSET
1,1
COMMENTS
Considering graph evolutions (see the Flajolet link) with 2n vertices initially isolated, the probability of the occurrence of an acyclic graph at the critical point n in the uniform model, will be denoted by P(n). In the case of the permutation model, the respective probability will be denoted by Pp(n).
LINKS
Philippe Flajolet, Donald E. Knuth, and Boris Pittel, The first cycles in an evolving graph, Discrete Mathematics, Vol. 75, No. 1-3 (1989), pp. 167-215.
Leonard Giugiuc and Dan Stefan Marinescu, Problem 4257, Crux Mathematicorum, Vol. 43, No. 6 (2017), pp. 263 and 265; Solution to Problem 4257, ibid., Vol. 44, No. 6 (2018), pp. 268-270.
FORMULA
Equals lim_{n->oo} Pp(n) / P(n) = lim_{n->oo} (2*n)^(2*n) / (binomial(binomial(2n,2), n) * n! * 2^n).
Equals lim_{n->oo} sqrt(n)/A000178(n)^(1/(n*(n+1))) (Giugiuc and Marinescu, 2017). - Amiram Eldar, Apr 12 2022
EXAMPLE
2.1170000166126746685453698198370956101344915847024...
MAPLE
evalf(exp(3/4), 134);
MATHEMATICA
RealDigits[Exp[3/4], 10, 100][[1]] (* Amiram Eldar, Apr 12 2022 *)
CROSSREFS
KEYWORD
nonn,cons
AUTHOR
Washington Bomfim, Feb 27 2020
STATUS
approved