The OEIS mourns the passing of Jim Simons and is grateful to the Simons Foundation for its support of research in many branches of science, including the OEIS.
The OEIS is supported by the many generous donors to the OEIS Foundation.

 Hints (Greetings from The On-Line Encyclopedia of Integer Sequences!)
 A302112 Number of forests with 2n nodes and n labeled trees. Also number of forests with exactly n edges on 2n labeled nodes. 14
 1, 1, 15, 435, 18865, 1092105, 79170399, 6899167275, 702495121185, 81857181636945, 10742799174110575, 1568060617808784099, 251983549987815976785, 44207398164005846558425, 8407483858740005340602175, 1722961754698440157865926875, 378507890849998531093971032385 (list; graph; refs; listen; history; text; internal format)
 OFFSET 0,3 COMMENTS From Washington Bomfim, Mar 20 2020: (Start) Considering the uniform model of graph evolution [see the Flajolet link] with 2n vertices initially isolated, the probability of the occurrence of an acyclic graph at the critical point n is P(n) = a(n) * n! * 2^n / (2n)^(2n). Concerning the permutation model [see same link] the corresponding probability is Pp(n) = a(n) / A331505(2n). By Kotesovec's approximation of a(n), P(n) ~ c1/n^(1/6), and Pp(n) ~ e^(3/4)* P(n), c1 = 0.577983047665... = (2/3)^(1/3) * sqrt(Pi) / Gamma(1/3). In both models the presence of cycles in graphs evolving near the critical time should be estimated by the above approximations. (End) LINKS Alois P. Heinz, Table of n, a(n) for n = 0..310 P. Flajolet, D. E. Knuth, and B. Pittel, The first cycles in an evolving graph, Discrete Mathematics, 75(1-3):167-215, 1989. FORMULA a(n) = A105599(2*n,n) = A138464(2*n,n). a(n) ~ c * 2^n * exp(n) * n^(n - 2/3), where c = 0.2305818... = 1 / (2^(1/6) * 3^(1/3) * Gamma(1/3)) [symbolic expression for c is conjectural]. - Vaclav Kotesovec, Jul 20 2019, updated Feb 20 2020 a(n) = (1/n!) * Sum_{j=0..n} (-1/2)^j * binomial(n,j) * binomial(2*n-1,n+j-1) * (2*n)^(n-j) * (n+j)!. - Jon E. Schoenfield, Jan 13 2020 a(n) = (-1)^n * (2*n)! * (Laguerre(n, 4*n) + 2*n*hypergeometric1F1(1 - n, 2, 4*n)) / (n! * 2^n). - Vaclav Kotesovec, Feb 19 2020 a(n) = (A332679(n) - 2*n*A332680(n)) * binomial(2*n, n) / 2^n. - Vaclav Kotesovec, Feb 20 2020 a(n) = (2*n)! * Sum_{P(2*n,n)} Product_{p=1..2*n} f(p)^c_p / (c_p! * p!^c_p), where f(n) = A000272(n) = n^(n-2) and P(2*n,n) are the partitions of 2*n with n parts, 1*c_1 + 2*c_2 + ... + (2*n)*c_n; c_1, c_2, ..., c_(2*n) >= 0. - Washington Bomfim, Apr 05 2020 MAPLE T:= proc(n, m) option remember; `if`(n<0, 0, `if`(n=m, 1, `if`(m<1 or m>n, 0, add(binomial(n-1, j-1)*j^(j-2)* T(n-j, m-1), j=1..n-m+1)))) end: a:= n-> T(2*n, n): seq(a(n), n=0..20); MATHEMATICA Flatten[{1, Table[Sum[(-1)^k * Binomial[n, k] * Binomial[2*n - 1, n - k] * 2^(n - 2*k) * n^(n - k) * (n + k)!, {k, 0, n} ] / n!, {n, 1, 20}]}] (* Vaclav Kotesovec, Jul 19 2019 *) Table[(-1)^n * HypergeometricPFQ[{1 - 2*n, -n}, {1, -2*n}, 4*n] * (2*n)! / (n!*2^n), {n, 0, 20}] (* Vaclav Kotesovec, Jul 19 2019 *) Table[(-1)^n * 2^n * Gamma[n + 1/2] * (2*n*Hypergeometric1F1[1 - n, 2, 4*n] + LaguerreL[n, 4*n]) / Sqrt[Pi], {n, 0, 20}] (* Vaclav Kotesovec, Feb 19 2020 *) CROSSREFS Cf. A000272, A138464, A331500, A331505. Sequence in context: A361284 A323781 A253447 * A262077 A225492 A256194 Adjacent sequences: A302109 A302110 A302111 * A302113 A302114 A302115 KEYWORD nonn AUTHOR Alois P. Heinz, Apr 01 2018 STATUS approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recents
The OEIS Community | Maintained by The OEIS Foundation Inc.

Last modified June 15 10:19 EDT 2024. Contains 373407 sequences. (Running on oeis4.)