login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A302113
a(n) = (4/(2*n-3))*(2*(n-1)*(2*n-1)*a(n-1) + (-1)^n*Product_{k=0..n-1} (2*k+1)) with a(0) = 0.
1
0, 4, 108, 2860, 96180, 3956580, 193437420, 10973128140, 709033518900, 51428555381700, 4138486257710700, 365929308313512300, 35268615299594546100, 3680203334234934622500, 413360438535421144267500, 49725729790306916413567500, 6378610855886528420493832500, 869137169523850497054287002500
OFFSET
0,2
LINKS
Travis Sherman, Summation of Glaisher- and Apery-like Series, University of Arizona, May 23 2000, p. 11, (3.48) - (3.52).
FORMULA
a(n) = (-1)^(n-1)*f1(n-1)*5*Product_{k=0..n-1} (2*k+1) where f1(n) corresponds to the x values such that Sum_{k>=0} (-1)^k/(binomial(2*k,k)*(2*k+(2*n+1))) = x*sqrt(5)*log((1+sqrt(5))/2) + y. (See examples for connection with a(n) in terms of material at Links section).
From Vaclav Kotesovec, Nov 22 2024: (Start)
Recurrence: (2*n - 3)*a(n) = 3*(2*n - 1)^2*a(n-1) + 8*(n-2)*(2*n - 3)*(2*n - 1)*a(n-2).
a(n) ~ sqrt(5*Pi) * 2^(3*n - 1/2) * n^(n + 1/2) / exp(n). (End)
EXAMPLE
Examples ((3.48) - (3.52)) at page 11 in Links section as follows, respectively.
For n=0, f1(0) = 4/5, so a(1) = 4.
For n=1, f1(1) = -36/5, so a(2) = 108.
For n=2, f1(2) = 572/15, so a(3) = 2860.
For n=3, f1(3) = -916/5, so a(4) = 96180.
For n=4, f1(4) = 29308/35, so a(5) = 3956580.
MATHEMATICA
RecurrenceTable[{a[m+1] == (4/(2*m - 1))*(2*m*(2*m + 1)*a[m] + (-1)^(m + 1) * Product[2*k + 1, {k, 0, m}]), a[0] == 0}, a, {m, 0, 15}] (* Vaclav Kotesovec, Apr 11 2018 *)
nmax = 15; Flatten[{0, Table[CoefficientList[1/Sqrt[5] * TrigToExp[Expand[ FunctionExpand[Table[FullSimplify[Sum[(-1)^j/(Binomial[2*j, j]*(2*j + (2*m + 1))), {j, 0, Infinity}]]*(-1)^m * 5 * Product[2*k + 1, {k, 0, m}], {m, 0, nmax}]]]], Log[1/2 + Sqrt[5]/2]][[n, 2]], {n, 1, nmax}]}] (* Vaclav Kotesovec, Apr 11 2018 *)
PROG
(PARI) a=vector(20); a[1]=4; for(n=2, #a, a[n]=(4/(2*n-3))*(2*(n-1)*(2*n-1)*a[n-1]+((-1)^n)*prod(k=0, n-1, (2*k+1)))); concat(0, a) \\ Altug Alkan, Apr 01 2018
CROSSREFS
Cf. A302114.
Sequence in context: A322085 A128865 A269270 * A357510 A336028 A131092
KEYWORD
nonn
AUTHOR
Detlef Meya, Apr 01 2018
EXTENSIONS
More terms from Altug Alkan, Apr 01 2018
STATUS
approved