login
A357510
a(n) = Sum_{k = 0..n} k * binomial(n,k)^2 * binomial(n+k,k)^2.
7
0, 4, 108, 3144, 95000, 2935020, 92054340, 2918972560, 93330811440, 3003683380020, 97177865060540, 3157623679795992, 102973952434618824, 3368460743291372092, 110480459392323735540, 3631941224582026770720, 119637879389041977365600, 3947968300820696313987780
OFFSET
0,2
FORMULA
Conjecture: a(p-1) == 0 (mod p^4) for all primes p >= 5 (checked up to p = 499).
Note: the Apery numbers A(n) = A005259(n) = Sum_{k = 0..n} binomial(n,k)^2 * binomial(n+k,k)^2 satisfy the supercongruence A(p-1) == 1 (mod p^3) for all primes p >= 5 (see, for example, Straub, Introduction).
Recurrence: a(0) = 0, a(1) = 4, a(2) = 108 and thereafter n^2*(n-1)*(2*n-3)*(3*n^2-9*n+7)*a(n) = (2*n-1)*(105*n^5 - 576*n^4 + 1208*n^3 - 1195*n^2 + 556*n - 104)*a(n-1) - (2*n-3)*(105*n^5 - 474*n^4 + 800*n^3 - 629*n^2 + 240*n - 36)*a(n-2) + (n-1)*(2*n-1)*(3*n^2-3*n+1)*(n-2)^2*a(n-3).
a(n) ~ (1 + sqrt(2))^(4*n + 2) / (2^(11/4) * Pi^(3/2) * sqrt(n)). - Vaclav Kotesovec, Oct 04 2022
EXAMPLE
a(11 - 1) = 97177865060540 = (2^2)*5*(11^4)*37*239*37529 == 0 (mod 11^4).
MAPLE
seq( add( k*binomial(n, k)^2 * binomial(n+k, k)^2, k = 0..n ), n = 0..20 );
PROG
(PARI) a(n) = sum(k = 0, n, k * binomial(n, k)^2 * binomial(n+k, k)^2); \\ Michel Marcus, Oct 04 2022
CROSSREFS
KEYWORD
nonn,easy
AUTHOR
Peter Bala, Oct 01 2022
STATUS
approved