login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A262077
The first of thirteen consecutive positive integers the sum of the squares of which is equal to the sum of the squares of seven consecutive positive integers.
4
15, 435, 66543, 1388283, 209496225, 4370333325, 659494068633, 13757807937693, 2076087118579335, 43309575017543115, 6535521589793696823, 136338528397417807203, 20573819888583439038345, 429193644085496239550805, 64766378473739076299032113
OFFSET
1,1
COMMENTS
For the first of the corresponding seven consecutive positive integers, see A262076.
FORMULA
a(n) = a(n-1)+3148*a(n-2)-3148*a(n-3)-a(n-4)+a(n-5) for n>5.
G.f.: 3*x*(9*x^4+140*x^3-6296*x^2-140*x-5) / ((x-1)*(x^4-3148*x^2+1)).
EXAMPLE
15 is in the sequence because 15^2 + ... + 27^2 = 5915 = 26^2 + ... + 32^2.
MATHEMATICA
LinearRecurrence[{1, 3148, -3148, -1, 1}, {15, 435, 66543, 1388283, 209496225}, 20] (* Vincenzo Librandi, Sep 11 2015 *)
PROG
(PARI) Vec(3*x*(9*x^4+140*x^3-6296*x^2-140*x-5)/((x-1)*(x^4-3148*x^2+1)) + O(x^20))
(Magma) I:=[15, 435, 66543, 1388283, 209496225]; [n le 5 select I[n] else Self(n-1)+3148*Self(n-2)-3148*Self(n-3)-Self(n-4)+Self(n-5): n in [1..50]]; // Vincenzo Librandi, Sep 11 2015
CROSSREFS
KEYWORD
nonn,easy
AUTHOR
Colin Barker, Sep 10 2015
STATUS
approved