login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A262078
Number T(n,k) of partitions of an n-set with distinct block sizes and maximal block size equal to k; triangle T(n,k), k>=0, k<=n<=k*(k+1)/2, read by columns.
4
1, 1, 1, 3, 1, 4, 10, 60, 1, 5, 15, 140, 280, 1260, 12600, 1, 6, 21, 224, 630, 3780, 34650, 110880, 360360, 2522520, 37837800, 1, 7, 28, 336, 1050, 7392, 74844, 276276, 1513512, 9459450, 131171040, 428828400, 2058376320, 9777287520, 97772875200, 2053230379200
OFFSET
0,4
LINKS
EXAMPLE
Triangle T(n,k) begins:
: 1;
: 1;
: 1;
: 3, 1;
: 4, 1;
: 10, 5, 1;
: 60, 15, 6, 1;
: 140, 21, 7, 1;
: 280, 224, 28, 8, 1;
: 1260, 630, 336, 36, 9, 1;
: 12600, 3780, 1050, 480, 45, 10, 1;
MAPLE
b:= proc(n, i) option remember; `if`(i*(i+1)/2<n, 0, `if`(n=0, 1,
b(n, i-1) +`if`(i>n, 0, binomial(n, i)*b(n-i, i-1))))
end:
T:= (n, k)-> b(n, k) -`if`(k=0, 0, b(n, k-1)):
seq(seq(T(n, k), n=k..k*(k+1)/2), k=0..7);
MATHEMATICA
b[n_, i_] := b[n, i] = If[i*(i+1)/2<n, 0, If[n==0, 1, b[n, i-1] + If[i>n, 0, Binomial[n, i]*b[n-i, i-1]]]]; T[n_, k_] := b[n, k] - If[k==0, 0, b[n, k-1]]; Table[T[n, k], {k, 0, 7}, {n, k, k*(k+1)/2}] // Flatten (* Jean-François Alcover, Dec 18 2016, after Alois P. Heinz *)
CROSSREFS
Row sums give A007837.
Column sums give A262073.
Cf. A000217, A002024, A262071, A262072 (same read by rows).
Sequence in context: A137405 A322456 A301701 * A121922 A054631 A180063
KEYWORD
nonn,tabf
AUTHOR
Alois P. Heinz, Sep 10 2015
STATUS
approved