login
The OEIS is supported by the many generous donors to the OEIS Foundation.

 

Logo

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 60th year, we have over 367,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

Other ways to Give
Hints
(Greetings from The On-Line Encyclopedia of Integer Sequences!)
A137405 Triangular sequence from coefficients of characteristic polynomial of n X n prime element matrices: M=A.B.A^(-1); (A(3) is singular): examples; A(4)= {{2, 3, 5, 7, 11}, {3, 5, 7, 11, 13}, {5, 7, 11, 13, 17}, {7, 11, 13, 17, 19}, {11, 13, 17, 19, 23}} B(4)= {{3, 5, 7, 11, 13}, {5, 7, 11, 13, 17}, {7, 11, 13, 17, 19}, {11, 13, 17, 19, 23}, {13, 17, 19, 23, 29}}. 0
1, 3, -1, -4, -10, 1, 12, 44, 23, -1, 0, 576, -864, -288, 316, 71, -1, -7104, -608, 5800, 1168, -670, -108, 1, 45248, 44096, -19712, -21712, 116, 1768, 151, -1, 450432, 135424, -346176, -66560, 69008, 7344, -3204, -204, 1, 2240512, -5071104, -1422080, 2168128, 188672, -212928, -10924, 5960, 265, -1 (list; graph; refs; listen; history; text; internal format)
OFFSET
1,2
COMMENTS
Row sums are (I put in zero for the singular matrix level): {1, 2, -13, 78, 0, -190, -1521, 49954, 246065, -2113500, 9798535, 74936314, ...}.
As far as I know, the only other use of this type of method is in deriving A086515.
LINKS
FORMULA
for n<=m,=d: A(d)=Prime[n + m + 1] B(d)=Prime[n + m + 2] p(x,d)=CharacteristicPolynomial[A.B.A^(-1)] out_n,m=Coefficient(p(x,d))
EXAMPLE
{1},
{3, -1},
{-4, -10, 1},
{12, 44,23, -1},
{0},
{576, -864, -288, 316, 71, -1},
{-7104, -608, 5800, 1168, -670, -108, 1},
{45248, 44096, -19712, -21712, 116, 1768,151, -1},
{450432, 135424, -346176, -66560, 69008, 7344, -3204, -204, 1},
{2240512, -5071104, -1422080, 2168128, 188672, -212928, -10924, 5960, 265, -1},
{5292544, -27469312, 33984128, 4845952, -6953248, -363232, 455688, 16064, -9714, -336, 1},
{-88076288, 158813184, 142065920, -134528512, -22576128, 18750592, 1438864, -925536, -41344, 15148, 415, -1}
MATHEMATICA
a = Table[Prime[n], {n, 1, 500}]; aa[d_] := Table[a[[n + m + 1]], {n, 0, d}, {m, 0, d}]; bb [d_] := Table[a[[n + m + 2]], {n, 0, d}, {m, 0, d}]; M [d_] := aa[d].bb[d].MatrixPower[aa[d], -1] g = Join[{1}, Table[If[d == 3, 0, CharacteristicPolynomial[M[d], x]], {d, 0, 10}]]; a0 = Join[{{1}}, Table[CoefficientList[If[d == 3, 0, CharacteristicPolynomial[M[d], x]], x], {d, 0, 10}]]; Flatten[{{1}, {3, -1}, {-4, -10, 1}, {12, 44, 23, -1}, {0}, {576, -864, -288, 316, 71, -1}, {-7104, -608, 5800, 1168, -670, -108, 1}, {45248, 44096, -19712, -21712, 116, 1768, 151, -1}, {450432, 135424, -346176, -66560, 69008, 7344, -3204, -204, 1}, {2240512, -5071104, -1422080, 2168128, 188672, -212928, -10924, 5960, 265, -1}, {5292544, -27469312, 33984128, 4845952, -6953248, -363232, 455688, 16064, -9714, -336, 1}, {-88076288, 158813184, 142065920, -134528512, -22576128, 18750592, 1438864, -925536, -41344, 15148, 415, -1}}]
CROSSREFS
Cf. A086515.
Sequence in context: A025116 A178300 A081720 * A322456 A301701 A262078
KEYWORD
tabf,uned,sign
AUTHOR
Roger L. Bagula, Apr 14 2008
STATUS
approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recents
The OEIS Community | Maintained by The OEIS Foundation Inc.

License Agreements, Terms of Use, Privacy Policy. .

Last modified December 6 09:02 EST 2023. Contains 367600 sequences. (Running on oeis4.)