The OEIS Foundation is supported by donations from users of the OEIS and by a grant from the Simons Foundation.

 Hints (Greetings from The On-Line Encyclopedia of Integer Sequences!)
 A247450 Decimal expansion of c(4), a constant appearing in certain Euler double sums not expressible in terms of well-known constants. 1
 2, 1, 1, 7, 1, 4, 1, 7, 3, 4, 7, 7, 7, 0, 3, 9, 4, 1, 1, 1, 2, 9, 1, 0, 0, 2, 2, 6, 0, 1, 2, 4, 5, 1, 7, 5, 1, 9, 1, 7, 6, 8, 0, 7, 6, 6, 9, 1, 6, 0, 8, 4, 0, 6, 9, 3, 6, 7, 6, 6, 3, 9, 0, 2, 7, 0, 4, 9, 4, 8, 2, 1, 2, 9, 8, 0, 6, 7, 5, 0, 9, 4, 9, 6, 0, 3, 6, 2, 6, 6, 0, 6, 8, 7, 7, 9, 0, 4, 6, 6, 3, 4, 5, 5 (list; constant; graph; refs; listen; history; text; internal format)
 OFFSET 1,1 LINKS J. M. Borwein, I.J. Zucker and J. Boersma, The evaluation of character Euler double sums, The Ramanujan Journal, April 2008, Volume 15, Issue 3, pp 377-405, see p. 17 c(4). FORMULA c(n) = sum_{k=0..n-2} (n-2)!/k!*log(2)^k*Li_(n-k)(1/2) + log(2)^n/n. c(4) = (1/12)*((-Pi^2)*log(2)^2 + log(2)^4 + 24*Li_4(1/2) + 21*log(2)*zeta(3)). EXAMPLE 2.117141734777039411129100226012451751917680766916084... MATHEMATICA c[4] = (1/12)*((-Pi^2)*Log[2]^2 + Log[2]^4 + 24*PolyLog[4, 1/2] + 21*Log[2]*Zeta[3]); RealDigits[c[4], 10, 104] // First CROSSREFS Cf. A002162 c(1), A072691 c(2), A233091 c(3). Sequence in context: A214631 A025270 A249450 * A178234 A259175 A297431 Adjacent sequences:  A247447 A247448 A247449 * A247451 A247452 A247453 KEYWORD nonn,cons,easy AUTHOR Jean-François Alcover, Sep 17 2014 STATUS approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent
The OEIS Community | Maintained by The OEIS Foundation Inc.

Last modified February 20 17:04 EST 2020. Contains 332080 sequences. (Running on oeis4.)