login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A331503
a(n) is the number of sets modulo n which can be formed by a finite arithmetic sequence.
0
1, 3, 7, 15, 31, 42, 99, 119, 193, 218, 463, 340, 807, 682, 849, 1087, 1939, 1299, 2775, 1862, 2615, 3050, 5107, 2988, 5681, 5242, 6439, 5656, 10615, 5562, 13083, 9631, 11367, 12362, 14153, 10531, 22719, 17578, 19361, 16050, 31243, 16728, 36207, 24284, 26133
OFFSET
1,2
FORMULA
a(n) = sigma(n) + n*(tau(n) - 1 - 3*floor(n/2) + Sum_{i=1..floor(n/2)} n/gcd(n,i)).
EXAMPLE
For n = 3, the a(3) = 7 solutions are {1}; {2}; {3}; {1,2}; {1,3}; {2,3}; {1,2,3}.
MATHEMATICA
Array[#3 + #1 (#2 - 1 - 3 #4 + Sum[#1/GCD[#1, i], {i, #4}]) & @@ Join[{#}, DivisorSigma[{0, 1}, #], {Floor[#/2]}] &, 45] (* Michael De Vlieger, May 04 2020 *)
PROG
(PARI) a(n) = {sigma(n) + n*(numdiv(n) - 1 - 3*(n\2) + sum(i=1, n\2, n/gcd(n, i)))} \\ Andrew Howroyd, May 03 2020
CROSSREFS
Cf. A000005 (tau), A000203 (sigma).
Sequence in context: A275532 A212315 A043729 * A137170 A377625 A222813
KEYWORD
nonn
AUTHOR
Brian Barsotti, May 03 2020
STATUS
approved