login
A377625
Nonnegative numbers whose nonadjacent form is antipalindromic.
3
0, 3, 7, 15, 31, 51, 63, 75, 99, 127, 155, 195, 231, 255, 279, 315, 387, 455, 511, 567, 635, 723, 771, 819, 903, 975, 1023, 1071, 1143, 1227, 1275, 1323, 1427, 1539, 1651, 1799, 1935, 2047, 2159, 2295, 2443, 2555, 2667, 2835, 2979, 3075, 3171, 3315, 3495, 3591
OFFSET
1,2
COMMENTS
Also nonnegative numbers k such that A379015(k) = -k.
LINKS
Joerg Arndt, Matters Computational (The Fxtbook), pages 61-62.
EXAMPLE
The first terms, alongside their nonadjacent forms, are:
n a(n) naf(a(n))
-- ---- ----------
1 0 0
2 3 10T
3 7 100T
4 15 1000T
5 31 10000T
6 51 10T010T
7 63 100000T
8 75 1010T0T
9 99 10T0010T
10 127 1000000T
11 155 10100T0T
12 195 10T00010T
13 231 100T0100T
14 255 10000000T
15 279 10010T00T
16 315 101000T0T
PROG
(PARI) is(n) = { my (m = 0, d, r = n); while (r, m *= 2; if (r % 2, r -= d = 2 - (r % 4); m += d; ); r \= 2; ); m == -n; }
CROSSREFS
See A233571 for a similar sequence.
Sequence in context: A043729 A331503 A137170 * A222813 A304078 A151338
KEYWORD
nonn,base
AUTHOR
Rémy Sigrist, Dec 28 2024
STATUS
approved