login
A377628
a(n) = a(n-1) + a(n-2) + 1 with a(0)=2 and a(1)=2.
0
2, 2, 5, 8, 14, 23, 38, 62, 101, 164, 266, 431, 698, 1130, 1829, 2960, 4790, 7751, 12542, 20294, 32837, 53132, 85970, 139103, 225074, 364178, 589253, 953432, 1542686, 2496119, 4038806, 6534926, 10573733, 17108660, 27682394, 44791055, 72473450, 117264506
OFFSET
0,1
COMMENTS
a(n) = A000071(n+2) if the initial conditions are a(0)=0, a(1)=1, a(2)=2.
FORMULA
G.f.: (x^2-2*x+2)/((x-1)*(x^2+x-1)).
a(n) = 3*F(n+1)-1.
a(n) = F(n-1)+F(n+3)-1.
a(n) = 2*F(n+1)-F(n+2)+F(n+3)-1.
a(n) = A022086(n+1) - 1.
E.g.f.: 3*exp(x/2)*(5*cosh(sqrt(5)*x/2) + sqrt(5)*sinh(sqrt(5)*x/2))/5 - exp(x). - Stefano Spezia, Nov 04 2024
MATHEMATICA
LinearRecurrence[{2, 0, -1}, {2, 2, 5}, 38] (* James C. McMahon, Nov 21 2024 *)
CROSSREFS
KEYWORD
nonn,easy
AUTHOR
Enrique Navarrete, Nov 02 2024
STATUS
approved