login

Reminder: The OEIS is hiring a new managing editor, and the application deadline is January 26.

A377629
Expansion of e.g.f. (1/x) * Series_Reversion( x*(1 - x*exp(x))^4 ).
2
1, 4, 60, 1644, 66712, 3611620, 245284344, 20071928212, 1923688610400, 211438912978692, 26225665058289640, 3624147718351890004, 552229557439437084816, 91990834731657653530180, 16632301623786709606057368, 3243982650658692575922907860, 678932992008068232965498759104
OFFSET
0,2
FORMULA
E.g.f. satisfies A(x) = 1/(1 - x * A(x) * exp(x*A(x)))^4.
E.g.f.: B(x)^4, where B(x) is the e.g.f. of A377631.
a(n) = 4 * n! * Sum_{k=0..n} k^(n-k) * binomial(4*n+k+4,k)/( (4*n+k+4)*(n-k)! ).
PROG
(PARI) a(n) = 4*n!*sum(k=0, n, k^(n-k)*binomial(4*n+k+4, k)/((4*n+k+4)*(n-k)!));
CROSSREFS
KEYWORD
nonn
AUTHOR
Seiichi Manyama, Nov 02 2024
STATUS
approved